CNN数据准备

参考:http://blog.csdn.net/chengzhongxuyou/article/details/50717543

数据准备

这部分是最耗时耗力的了,自己自行准备,注意准备的图片的大小最好是一样的,免得麻烦。我使用64*64的尺寸大小。给出train文件夹图像库的列表示意。假设我们已经准备好了数据,每一个分类中有100张train图片,有20张test图片。将这里面的400张train图片放到train文件夹,80张test图片放到test文件夹。

然后我们需要制作标签(label),将图片路径与图片分类作为键值对,因为我们需要对四种不同的图像进行分类,所以我们可以将第一种图像的标签设为0,第二种设为1,第三种设为2,第四种设为3.

这些“键值对”被保存到.txt中。对应的train中的label为:

如果图片数据库非常大,直接写一个小程序,自动生成标签label的.txt。注意label包括两个部分,一个是train,一个是test。这里不再赘述test的label的生成。

那么我们为什么要花时间去做label呢,当然是通过程序读取label的.txt,每一行为一个键值对,一个键值对对应一幅图像的路径与标签。注意,是图像的路径而不是图像的名称。因为我的数据库与程序在同级目录,所以这里的图片名称即为图片相对路径。

时间: 2024-11-12 05:22:52

CNN数据准备的相关文章

CNN(卷积神经网络)

作者:机器之心链接:https://www.zhihu.com/question/52668301/answer/131573702来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. Part 1:图像识别任务 卷积神经网络,听起来像是计算机科学.生物学和数学的诡异组合,但它们已经成为计算机视觉领域中最具影响力的革新的一部分.神经网络在 2012 年崭露头角,Alex Krizhevsky 凭借它们赢得了那一年的 ImageNet 挑战赛(大体上相当于计算机视觉的年度

对比学习用 Keras 搭建 CNN RNN 等常用神经网络

Keras 是一个兼容 Theano 和 Tensorflow 的神经网络高级包, 用他来组件一个神经网络更加快速, 几条语句就搞定了. 而且广泛的兼容性能使 Keras 在 Windows 和 MacOS 或者 Linux 上运行无阻碍. 今天来对比学习一下用 Keras 搭建下面几个常用神经网络: 回归 RNN回归 分类 CNN分类 RNN分类 自编码分类 它们的步骤差不多是一样的: [导入模块并创建数据] [建立模型] [定义优化器] [激活模型] [训练模型] [检验模型] [可视化结果

深度学习文献阅读笔记(1)

转眼间已经研二了,突然想把以前看过的文献总结总结与大家分享,留作纪念,方便以后参考. 1.深度追踪:通过卷积网络进行差异特征学习的视觉追踪(DeepTrack:Learning Discriminative Feature Representations by Convolutional Neural Networks for visual Tracking)(英文,会议论文,2014年,EI检索) 将卷积神经网络用于目标跟踪的一篇文章,可将CNN不仅仅可以用做模式识别,做目标跟踪也是可以,毕竟

【深度学习系列1】 深度学习在腾讯的平台化和应用实践(转载)

转载:原文链接 [深度学习系列1] 深度学习在腾讯的平台化和应用实践 引言:深度学习是近年机器学习领域的重大突破,有着广泛的应用前景.随着Google公开 Google Brain计划,业界对深度学习的热情高涨.腾讯在深度学习领域持续投入,获得了实际落地的产出.我们准备了四篇文章,阐述深度学习的原理和在腾讯的实 践,介绍腾讯深度学习平台Mariana,本文为第一篇. 深度学习(Deep Learning)是近年来机器学习领域的热点,在语音识别.图像识别等领域均取得了突破性进展.腾讯提供广泛的互联

TensorflowTutorial_一维数据构造简单CNN

使用一维数据构造简单卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 神经网络对于一维数据非常重要,时序数据集.信号处理数据集和一些文本嵌入数据集都是一维数据,会频繁的使用到神经网络.我们在此利用一组一维数据构造卷积层-最大池化层-全连接层的卷积神经网络.希望给大家使用CNN处理一维数据一些帮助. 参考代码 # Implementing Different Layers # --------------------------------------- # # We will

TensorflowTutorial_二维数据构造简单CNN

使用二维数据构造简单卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 图像和一些时序数据集都可以用二维数据的形式表现,我们此次使用随机分布的二位数据构造一个简单的CNN-网络卷积-最大池化-全连接 参考代码 # Implementing Different Layers # --------------------------------------- # # We will illustrate how to use different types # of layers

深度学习原理与框架-CNN在文本分类的应用 1.tf.nn.embedding_lookup(根据索引数据从数据中取出数据) 2.saver.restore(加载sess参数)

1. tf.nn.embedding_lookup(W, X) W的维度为[len(vocabulary_list), 128], X的维度为[?, 8],组合后的维度为[?, 8, 128] 代码说明一下:即根据每一行X中的一个数,从W中取出对应行的128个数据,比如X[1, 3]个数据是3062,即从W中的第3062行取出128个数据 import numpy as np import tensorflow as tf data = np.array([[2, 1], [3, 4], [5,

使用CNN(convolutional neural nets)检测脸部关键点教程(三):卷积神经网络训练和数据扩充

第五部分 第二个模型:卷积神经网络 上图演示了卷积操作 LeNet-5式的卷积神经网络,是计算机视觉领域近期取得的巨大突破的核心.卷积层和之前的全连接层不同,采用了一些技巧来避免过多的参数个数,但保持了模型的描述能力.这些技巧是: 1, 局部联结:神经元仅仅联结前一层神经元的一小部分. 2, 权重共享:在卷积层,神经元子集之间的权重是共享的.(这些神经元的形式被称为特征图[feature map]) 3, 池化:对输入进行静态的子采样. 局部性和权重共享的图示 卷积层的单元实际上连接了前一层神经

CNN训练自己的数据

1.准备数据 将自己的数据放到train  和 val 文件夹下,然后使用 create_imagefile.py 制作txt列表文件,生成train.txt和val.txt 2.使用 shell 脚本 create_mydata.sh 制作lmdb格式数据 3.通过脚本make_mydata_mean.sh制作均值文件mydata.binaryproto 4.修改网络配置proto文件和求解文件 note: 1.在用python代码读取数据时,如果出现 这个错误 [email protecte