算法:Astar寻路算法改进

早前写了一篇《RCP:gef智能寻路算法(A star)

出现了一点问题。

在AStar算法中,默认寻路起点和终点都是N x N的方格,但如果用在路由上,就会出现问题。

如果,需要连线的终点并不在方格的四角上,就产生了斜线。于是我们可以对终点附近的点重新做一点儿处理,源码如下所示:

        int size = points.size();
        if (size < 3)
            return;
        points.removePoint(size - 1);
        Point pointN1 = points.getLastPoint();
        Point pointN2 = points.getPoint(size - 3);

        if (pointN2.x == pointN1.x) {
            points.setPoint(new Point(pointN1.x, endPoint.y), size - 2);
        } else if (pointN2.y == pointN1.y) {
            points.setPoint(new Point(endPoint.x, pointN1.y), size - 2);
        }
时间: 2024-10-06 11:12:37

算法:Astar寻路算法改进的相关文章

算法:Astar寻路算法改进,双向A*寻路算法

早前写了一篇关于A*算法的文章:<算法:Astar寻路算法改进> 最近在写个js的UI框架,顺便实现了一个js版本的A*算法,与之前不同的是,该A*算法是个双向A*. 双向A*有什么好处呢? 我们知道,A*的时间复杂度是和节点数量以及起始点难度呈幂函数正相关的. 这个http://qiao.github.io/PathFinding.js/visual/该网址很好的演示了双向A*的效果,我们来看一看. 绿色表示起点,红色表示终点,灰色是墙面.稍浅的两种绿色分别代表open节点和close节点:

C#实现简单的AStar寻路算法

1.算法实施模型 在我看来,最简单最基础的寻路环境是:在一片二维网格区域中存在一些围墙(Block),在起始点和终点之间保持连通的前提下寻找一条最佳路径. 2.算法原理 详细介绍有很多,可参考网址:http://www.policyalmanac.org/games/aStarTutorial.htm,浅显易懂,重点是理解"启发式搜索"的概念.下面谈谈我自己的理解,如果是第一次接触A*寻路算法,还是先老老实实看完给出的参考网址吧(当然也可以参考相关的中文介绍资料). 在一片二维网格中,

一种高效的寻路算法 - B*寻路算法

在此把这个算法称作B* 寻路算法(Branch Star 分支寻路算法,且与A*对应),本算法适用于游戏中怪物的自动寻路,其效率远远超过A*算法,经过测试,效率是普通A*算法的几十上百倍. 通过引入该算法,一定程度上解决了游戏服务器端无法进行常规寻路的效率问题,除非服务器端有独立的AI处理线程,否则在服务器端无法允许可能消耗大量时间的寻路搜索,即使是业界普遍公认的最佳的A*,所以普遍的折中做法是服务器端只做近距离的寻路,或通过导航站点缩短A*的范围. 算法原理  本算法启发于自然界中真实动物的寻

javascript的Astar版 寻路算法

去年做一个模仿保卫萝卜的塔防游戏的时候,自己写的,游戏框架用的是coco2d-html5 实现原理可以参考 http://www.cnblogs.com/technology/archive/2011/05/26/2058842.html 这个算法项目一直放在github中,朋友们需要的可以自己去看下 https://github.com/caoke90/Algorithm/blob/master/Astar.js //Astar 寻路算法 //Point 类型 var cc=cc||conso

RCP:gef智能寻路算法(A star)

本路由继承自AbstactRouter,参数只有EditPart(编辑器内容控制器),gridLength(寻路用单元格大小),style(FLOYD,FLOYD_FLAT,FOUR_DIR). 字符集编码为GBK,本文只做简单的代码解析,源码戳我 如果源码不全,可以联系本人. 算法实现主要有三: 1.Astar单向寻路 2.地图预读 3.弗洛伊德平滑算法 Astar寻路的实现: ANode minFNode = null; while (true) { minFNode = findMinNo

A*寻路算法的优化与改进

提要 通过对上一篇A*寻路算法的学习,我们对A*寻路应该有一定的了解了,但实际应用中,需要对算法进行一些改进和优化. Iterative Deepening Depth-first search- 迭代深化深度优先搜索 在深度优先搜索中一个比较坑爹情形就是在搜索树的一枝上没有要搜的结果,但是却非常深,甚至深不见底,这样就根本搜索不到结果.为了防止这种情况出现,就出现了Iterative Deepening的思想. 迭代深化搜索(Iterative deepening search, IDS)或者

A*寻路算法的探寻与改良(三)

A*寻路算法的探寻与改良(三) by:田宇轩                                        第三分:这部分内容基于树.查找算法等对A*算法的执行效率进行了改良,想了解细化后的A*算法和变种A*算法内容的朋友们可以跳过这部分并阅读稍后更新的其他内容 3.1 回顾 在我的上一篇文章中,我们探讨了如何用编程实现A*算法,并给出了C语言的算法实现,这一章内容中我们主要研究如何提高A*算法的执行效率.抛开时间复杂度的复杂计算,我们大概可以知道,函数对数据的操作次数越少,达成

[转] A*寻路算法C++简单实现

参考文章: http://www.policyalmanac.org/games/aStarTutorial.htm   这是英文原文<A*入门>,最经典的讲解,有demo演示 http://www.cnblogs.com/technology/archive/2011/05/26/2058842.html  这是国人翻译后整理的简版,有简单代码demo,不过有些错误,讲得很清晰,本文图片来自这篇 http://blog.csdn.net/b2b160/article/details/4057

A星寻路算法以及C++实现

A星寻路算法真是我一生接触的第一个人工智能算法了... A星寻路算法显然是用来寻路的,应用也很普遍,比如梦幻西游...算法的思路很简单,就是在bfs的基础上加了估值函数. 它的核心是 F(x) = G(x) + H(x) 和open.close列表: G(x)表示从起点到X点的消耗(或者叫移动量什么的),H(X)表示X点到终点的消耗的估值,F(x)就是两者的和值.open列表记录了可能要走的区域,close列表记录了不会再考虑的区域.我们每次都选F值最小的区域搜索,就能搜到一条到终点的最短路径,