Big Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5930 Accepted Submission(s): 4146
Problem Description
As we know, Big Number is always troublesome. But it‘s really important in our ACM. And today, your task is to write a program to calculate A mod B.
To make the problem easier, I promise that B will be smaller than 100000.
Is it too hard? No, I work it out in 10 minutes, and my program contains less than 25 lines.
Input
The input contains several test cases. Each test case consists of two positive integers A and B. The length of A will not exceed 1000, and B will be smaller than 100000. Process to the end of file.
Output
For each test case, you have to ouput the result of A mod B.
Sample Input
2 3
12 7
152455856554521 3250
Sample Output
2
5
1521
此题需要用到同余定理:
常用的同余定理有以下三种:
(1)((A mod m)*(B mod m))mod m ==(A*B)mod m
(2)((A mod m)+(B mod m))mod m ==(A+B)mod m
(3)((A mod m)-(B mod m)+ m)mod m ==(A-B)mod m
在减法中,由于a mod n 可能小于b mod n,需要在结果上加上n.
我们先了解下如何运用同余定理求余数:
/*例如10000对m求余: * 10000%m * ==(10%m*1000%m)%m * ==(10%m*(10%m*100%m)%m)%m * ==(10%m*(10%m*(10%m*10%m)%m)%m)%m * 用代码表示就是: * 假设10000是字符串长度是len */ /* * 如123对m求余 * 123%m * ==((12%m*10%m)%m+3%m)%m * ==(((10%m+2%m)%m*10%m)%m+3%m)%m * ==((((1%m*10%m)%m+2%m)%m*10%m)%m+3%m)%m */ gets(str); int ans=0; for(i=0;i<len;i++) { ans=ans*10+str[i]; ans=ans%m; }
详细的模运算请参考:http://blog.csdn.net/chocolate_22/article/details/6458029
此题用到了(1)(2)两个:
#include<stdio.h> #include<string.h> #define MAX 1100 int main() { int n,m,j,i,s,t; char p[MAX]; while(scanf("%s",p)!=EOF) { scanf("%d",&n); int l=strlen(p); s=0; for(i=0;i<l;i++) { s=s*10+p[i]-‘0‘; s=s%n; } printf("%d\n",s); } return 0; }