希尔伯特变换的物理意义

作者:王赟 Maigo
链接:https://www.zhihu.com/question/30372795/answer/47876447
来源:知乎
著作权归作者所有,转载请联系作者获得授权。

希尔伯特变换的物理意义十分简单:把信号的所有频率分量的相位推迟90度。
也就是说,如果原信号可以表示成
则经过希尔伯特变换后的信号为
这一点通过希尔伯特变换的频域形式很容易看出来:
,其中

当然,我知道题主最感兴趣的是:把相位推迟90度有什么用?
答案是:希尔伯特变换可以用来做解调器,调幅、调频都能解。

如图,蓝色是一个调制信号,其幅度、频率都经过了调制。
绿色是蓝色信号的希尔伯特变换。由于调制波的幅度和瞬时频率变化都很慢(与载波频率相比),其频率成分比较单一(都集中在载波频率附近),所以希尔伯特变换的效果——相位推迟90度——是很明显的。
现在构造信号,我们想办法把这个信号在三维空间中画出来。
下面这张图中有三个轴:时间轴、实轴、虚轴。
时间轴和实轴构成的平面上画出了(蓝色),
时间轴和虚轴构成的平面上画出了(绿色),
三维空间中画出了(红色)。
可以看出,的样子就像一根粗细、疏密都在变化的弹簧。
在任意一个时刻,我们都可以读出的瞬时幅度和瞬时相位:
瞬时幅度为,瞬时相位的正切值为
而瞬时相位对时间的导数就是瞬时频率。

这样,我们就利用希尔伯特变换从一个幅度、频率均被调制的调制波中把幅度、频率都解调了出来。

当然,实际的解调器中并不是这么做的,一个重要的原因就是希尔伯特变换不是因果的,不能实时解调。

时间: 2025-01-04 00:33:09

希尔伯特变换的物理意义的相关文章

傅立叶变换的物理意义

1.为什么要进行傅里叶变换,其物理意义是什么? 傅立叶变换是数字信号处理领域一种很重要的算法.要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义.傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加.而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率.振幅和相位. 和傅立叶变换算法对应的是反傅立叶变换算法.该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号. 因此,可以说,傅立

FFT结果的物理意义

图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度.如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低:而对 于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高.傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱.从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的.从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域.换句话说,

矩阵及其变换、特征值与特征向量的物理意义

矩阵及其变换.特征值与特征向量的物理意义 最近在做聚类的时候用到了主成分分析PCA技术,里面涉及一些关于矩阵特征值和特征向量的内容,在网上找到一篇对特征向量及其物理意义说明较好的文章,整理下来,分享一下. 一.矩阵基础[1]: 矩阵是一个表示二维空间的数组,矩阵可以看做是一个变换.在线性代数中,矩阵可以把一个向量变换到另一个位置,或者说从一个坐标系变换到另一个坐标系.矩阵的“基”,实际就是变换时所用的坐标系.而所谓的相似矩阵(),就是同样的变换,只不过使用了不同的坐标系.线性代数中的相似矩阵实际

[综] 卷积的物理意义

卷积的物理意义是什么? https://www.zhihu.com/question/21686447?nr=1 果程C 他夏了夏天 1740 人赞同了该回答 对于初学者,我推荐用复利的例子来理解卷积可能更直观一些: 小明存入100元钱,年利率是5%,按复利计算(即将每一年所获利息加入本金,以计算下一年的利息),那么在五年之后他能拿到的钱数是,如下表所示:将这笔钱存入银行的一年之后,小明又往银行中存入了100元钱,年利率仍为5%,那么这笔钱按复利计算,到了第五年,将收回的钱数是,我们将这一结果作

关于卷积的血腥实例、本质及物理意义

作为一名苦逼工科生,<信号与系统>+<数字信号处理>是绕不过去的坎,各种让人头疼的概念与数学公式:傅里叶变化.拉普拉斯变化.Z变换.卷积.循环卷积.自相关.互相关.离散傅里叶变化.离散傅里叶时间变化-- 前一段时间在知乎发现一个有趣例子,生动形象地解释了卷积的物理意义,且解释的较为准确,下面,正文来了: 比如说你的老板命令你干活,你却到楼下打台球去了,后来被老板发现,他非常气愤,扇了你一巴掌(注意,这就是输入信号,脉冲),于是你的脸上会渐渐地(贱贱地)鼓起来一个包,你的脸就是一个系

好文!特征值和特征向量的几何和物理意义 【转载东山狼的blog】

我们知道,矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量.在这个变换的过程中,原向量主要发生旋转.伸缩的变化.如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值. 实际上,上述的一段话既讲了矩阵变换特征值及特征向量的几何意义(图形变换)也讲了其物理含义.物理的含义就是运动的图景:特征向量在一个矩阵的作用下作伸缩运动,伸缩的幅度由特征值确定.特征值大于1,所有属于此特征值的特征向量身形

傅里叶变换与拉普拉斯变换的物理解释及区别

傅里叶变换在物理学.数论.组合数学.信号处理.概率论.统计学.密码学.声学.光学.海洋学.结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量). 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合.在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换. 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度.理解的关键是:一个连续的信号可以看作是一个个小信号的

卷积的物理意义

原文链接:http://www.cnblogs.com/ylhome/archive/2010/01/07/1641121.html 卷积这个东东是“信号与系统”中论述系统对输入信号的响应而提出的.因为是对模拟信号论述的,所以常常带有繁琐的算术推倒,很简单的问题的本质常常就被一大堆公式淹没了,那么卷积究竟物理意义怎么样呢? 卷积表示为y(n) = x(n)*h(n).使用离散数列来理解卷积会更形象一点,我们把y(n)的序列表示成y(0),y(1),y(2) and so on; 这是系统响应出来

卷积的本质及物理意义(全面理解卷积)

卷积的本质及物理意义(全面理解卷积) 卷积的本质及物理意义 提示:对卷积的理解分为三部分讲解1)信号的角度2)数学家的理解(外行)3)与多项式的关系 1 来源 卷积其实就是为冲击函数诞生的.“冲击函数”是狄拉克为了解决一些瞬间作用的物理现象而提出的符号.古人曰:“说一堆大道理不如举一个好例子”,冲量这一物理现象很能说明“冲击函数”.在t时间内对一物体作用F的力,倘若作用时间t很小,作用力F很大,但让Ft的乘积不变,即冲量不变.于是在用t做横坐标.F做纵坐标的坐标系中,就如同一个面积不变的长方形,