BP(back propagation)反向传播

转自:http://www.zhihu.com/question/27239198/answer/89853077

机器学习可以看做是数理统计的一个应用,在数理统计中一个常见的任务就是拟合,也就是给定一些样本点,用合适的曲线揭示这些样本点随着自变量的变化关系。

深度学习同样也是为了这个目的,只不过此时,样本点不再限定为(x, y)点对,而可以是由向量、矩阵等等组成的广义点对(X,Y)。而此时,(X,Y)之间的关系也变得十分复杂,不太可能用一个简单函数表示。然而,人们发现可以用多层神经网络来表示这样的关系,而多层神经网络的本质就是一个多层复合的函数。借用网上找到的一幅图[1],来直观描绘一下这种复合关系。

其对应的表达式如下:

上面式中的Wij就是相邻两层神经元之间的权值,它们就是深度学习需要学习的参数,也就相当于直线拟合y=k*x+b中的待求参数k和b。

和直线拟合一样,深度学习的训练也有一个目标函数,这个目标函数定义了什么样的参数才算一组“好参数”,不过在机器学习中,一般是采用成本函数(cost function),然后,训练目标就是通过调整每一个权值Wij来使得cost达到最小。cost函数也可以看成是由所有待求权值Wij为自变量的复合函数,而且基本上是非凸的,即含有许多局部最小值。但实际中发现,采用我们常用的梯度下降法就可以有效的求解最小化cost函数的问题。

梯度下降法需要给定一个初始点,并求出该点的梯度向量,然后以负梯度方向为搜索方向,以一定的步长进行搜索,从而确定下一个迭代点,再计算该新的梯度方向,如此重复直到cost收敛。那么如何计算梯度呢?

假设我们把cost函数表示为

,

那么它的梯度向量[2]就等于

其中表示正交单位向量。为此,我们需求出cost函数H对每一个权值Wij的偏导数。而BP算法正是用来求解这种多层复合函数的所有变量的偏导数的利器

我们以求e=(a+b)*(b+1)的偏导[3]为例。
它的复合关系画出图可以表示如下:

在图中,引入了中间变量c,d。

为了求出a=2, b=1时,e的梯度,我们可以先利用偏导数的定义求出不同层之间相邻节点的偏导关系,如下图所示。

利用链式法则我们知道:

   以及   

链式法则在上图中的意义是什么呢?其实不难发现,的值等于从a到e的路径上的偏导值的乘积,而的值等于从b到e的路径1(b-c-e)上的偏导值的乘积加上路径2(b-d-e)上的偏导值的乘积。也就是说,对于上层节点p和下层节点q,要求得,需要找到从q节点到p节点的所有路径,并且对每条路径,求得该路径上的所有偏导数之乘积,然后将所有路径的 “乘积” 累加起来才能得到的值。

大家也许已经注意到,这样做是十分冗余的,因为很多路径被重复访问了。比如上图中,a-c-e和b-c-e就都走了路径c-e。对于权值动则数万的深度模型中的神经网络,这样的冗余所导致的计算量是相当大的。

同样是利用链式法则,BP算法则机智地避开了这种冗余,它对于每一个路径只访问一次就能求顶点对所有下层节点的偏导值。

正如反向传播(BP)算法的名字说的那样,BP算法是反向(自上往下)来寻找路径的。

从最上层的节点e开始,初始值为1,以层为单位进行处理。对于e的下一层的所有子节点,将1乘以e到某个节点路径上的偏导值,并将结果“堆放”在该子节点中。等e所在的层按照这样传播完毕后,第二层的每一个节点都“堆放"些值,然后我们针对每个节点,把它里面所有“堆放”的值求和,就得到了顶点e对该节点的偏导。然后将这些第二层的节点各自作为起始顶点,初始值设为顶点e对它们的偏导值,以"层"为单位重复上述传播过程,即可求出顶点e对每一层节点的偏导数。

以上图为例,节点c接受e发送的1*2并堆放起来,节点d接受e发送的1*3并堆放起来,至此第二层完毕,求出各节点总堆放量并继续向下一层发送。节点c向a发送2*1并对堆放起来,节点c向b发送2*1并堆放起来,节点d向b发送3*1并堆放起来,至此第三层完毕,节点a堆放起来的量为2,节点b堆放起来的量为2*1+3*1=5, 即顶点e对b的偏导数为5.

举个不太恰当的例子,如果把上图中的箭头表示欠钱的关系,即c→e表示e欠c的钱。以a, b为例,直接计算e对它们俩的偏导相当于a, b各自去讨薪。a向c讨薪,c说e欠我钱,你向他要。于是a又跨过c去找e。b先向c讨薪,同样又转向e,b又向d讨薪,再次转向e。可以看到,追款之路,充满艰辛,而且还有重复,即a, b 都从c转向e。

而BP算法就是主动还款。e把所欠之钱还给c,d。c,d收到钱,乐呵地把钱转发给了a,b,皆大欢喜。

时间: 2024-10-16 22:19:57

BP(back propagation)反向传播的相关文章

BP算法,反向传播算法

原文地址:https://www.cnblogs.com/yunshangyue71/p/11543787.html

深度学习基础--神经网络--BP反向传播算法

BP算法: 1.是一种有监督学习算法,常被用来训练多层感知机.  2.要求每个人工神经元(即节点)所使用的激励函数必须可微. (激励函数:单个神经元的输入与输出之间的函数关系叫做激励函数.) (假如不使用激励函数,神经网络中的每层都只是做简单的线性变换,多层输入叠加后也还是线性变换.因为线性模型的表达能力不够,激励函数可以引入非线性因素) 下面两幅图分别为:无激励函数的神经网络和激励函数的神经网络 如图所示,加入非线性激活函数后的差异:上图为用线性组合逼近平滑曲线来分割平面,下图为使用平滑的曲线

DL4NLP——神经网络(一)前馈神经网络的BP反向传播算法步骤整理

这里把按[1]推导的BP算法(Backpropagation)步骤整理一下,备忘使用.[1] 中直接使用矩阵微分的记号进行推导,整个过程十分简洁.而且这种矩阵形式有一个非常大的优势就是对照其进行编程实现时非常方便. 但其实用标量计算推导也有一定的好处,比如可以清楚地知道某个权重是被谁所影响的. 记号约定: $L$:神经网络的层数.输入层不算. $n^l$:第 $l$ 层神经元的个数.偏置神经元不算在内. $W^{l}\in\mathbb R^{n^l\times n^{l-1}}$:第 $l-1

神经网络训练中的Tricks之高效BP(反向传播算法)

神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) [email protected] http://blog.csdn.net/zouxy09 Tricks!这是一个让人听了充满神秘和好奇的词.对于我们这些所谓的尝试应用机器学习技术解决某些问题的人,更是如此.曾记得,我们绞尽脑汁,搓手顿足,大喊“为什么我跑的模型不work?”,“为什么我实现的效果那么差?”,“为什么我复现的结果没有他论文里面说的那么好?”.有人会和你说“你不懂调参!

稀疏自动编码之反向传播算法(BP)

假设给定m个训练样本的训练集,用梯度下降法训练一个神经网络,对于单个训练样本(x,y),定义该样本的损失函数: 那么整个训练集的损失函数定义如下: 第一项是所有样本的方差的均值.第二项是一个归一化项(也叫权重衰减项),该项是为了减少权连接权重的更新速度,防止过拟合. 我们的目标是最小化关于 W 和 b 的函数J(W,b). 为了训练神经网络,把每个参数 和初始化为很小的接近于0的随机值(例如随机值由正态分布Normal(0,ε2)采样得到,把 ε 设为0.01), 然后运用批量梯度下降算法进行优

[NN] 对于BackPropagation(BP, 误差反向传播)的一些理解

本文大量参照 David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams, Learning representation by back-propagating errors, Nature, 323(9): p533-536, 1986. 在现代神经网络中, 使用最多的算法当是反向传播(BP). 虽然BP有着收敛慢, 容易陷入局部最小等缺陷, 但其易用性, 准确度却是其他算法无可比拟的. 在本文中, $w_{ji}$为连接前一层

BP网络中的反向传播

本文的主要参考:How the backpropagation algorithm works 下面是BP网络的参数结构示意图 首先定义第l层网络第j个神经元的输出(activation) 为了表示简便,令 则有alj=σ(zlj),其中σ是激活函数 定义网络的cost function,其中的n是训练样本的个数. 下面主要介绍使用反向传播来求取cost function相对于权重wij和偏置项bij的导数. 显然,当输入已知时,cost function只是权值w和偏置项b的函数.这里为了方便

手写BP(反向传播)算法

BP算法为深度学习中参数更新的重要角色,一般基于loss对参数的偏导进行更新. 一些根据均方误差,每层默认激活函数sigmoid(不同激活函数,则更新公式不一样) 假设网络如图所示: 则更新公式为: 以上列举了最后2层的参数更新方式,第一层的更新公式类似,即上一层的误差来自于下一层所有的神经元,e的更新就是不断建立在旧的e上(这里g可以当做初始的e) 下面上代码: 1,BP算法 # 手写BP算法 import numpy as np # 先更新参数,再继续传播 # layers:包括从输入层到输

读懂反向传播算法(bp算法)

原文链接:这里 介绍 反向传播算法可以说是神经网络最基础也是最重要的知识点.基本上所以的优化算法都是在反向传播算出梯度之后进行改进的.同时,也因为反向传播算法是一个递归的形式,一层一层的向后传播误差即可,很容易实现(这部分听不懂没关系,下面介绍).不要被反向传播吓到,掌握其核心思想就很容易自己手推出来. 思想 我们知道神经网络都是有一个loss函数的.这个函数根据不同的任务有不同的定义方式,但是这个loss函数的目的就是计算出当前神经网络建模出来输出的数据和理想数据之间的距离.计算出loss之后