Window Pains POJ 2585

Description

Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one application at a time, he usually runs nine applications, each in its own window. Due to limited screen real estate, he overlaps these windows and brings whatever window he currently needs to work with to the foreground. If his screen were a 4 x 4 grid of squares, each of Boudreaux‘s windows would be represented by the following 2 x 2 windows:

1 1 . .
1 1 . .
. . . .
. . . .
. 2 2 .
. 2 2 .
. . . .
. . . .
. . 3 3
. . 3 3
. . . .
. . . .
. . . .
4 4 . .
4 4 . .
. . . .
. . . .
. 5 5 .
. 5 5 .
. . . .
. . . .
. . 6 6
. . 6 6
. . . .
. . . .
. . . .
7 7 . .
7 7 . .
. . . .
. . . .
. 8 8 .
. 8 8 .
. . . .
. . . .
. . 9 9
. . 9 9

When
Boudreaux brings a window to the foreground, all of its squares come to
the top, overlapping any squares it shares with other windows. For
example, if window 1and then window 2 were brought to the foreground, the resulting representation would be:

1 2 2 ?
1 2 2 ?
? ? ? ?
? ? ? ?
If window 4 were then brought to the foreground:
1 2 2 ?
4 4 2 ?
4 4 ? ?
? ? ? ?

. . . and so on . . .

Unfortunately, Boudreaux‘s computer is very unreliable and
crashes often. He could easily tell if a crash occurred by looking at
the windows and seeing a graphical representation that should not occur
if windows were being brought to the foreground correctly. And this is
where you come in . . .

Input

Input to this problem will consist of a (non-empty) series of up to 100
data sets. Each data set will be formatted according to the following
description, and there will be no blank lines separating data sets.

A single data set has 3 components:

  1. Start line - A single line:
    START
  2. Screen
    Shot - Four lines that represent the current graphical representation
    of the windows on Boudreaux‘s screen. Each position in this 4 x 4 matrix
    will represent the current piece of window showing in each square. To
    make input easier, the list of numbers on each line will be delimited by
    a single space.
  3. End line - A single line:
    END

After the last data set, there will be a single line:

ENDOFINPUT

Note that each piece of visible window
will appear only in screen areas where the window could appear when
brought to the front. For instance, a 1 can only appear in the top left
quadrant.

Output

For each data set, there will be exactly one line of output. If there
exists a sequence of bringing windows to the foreground that would
result in the graphical representation of the windows on Boudreaux‘s
screen, the output will be a single line with the statement:

THESE WINDOWS ARE CLEAN

Otherwise, the output will be a single line with the statement:

THESE WINDOWS ARE BROKEN

Sample Input

START
1 2 3 3
4 5 6 6
7 8 9 9
7 8 9 9
END
START
1 1 3 3
4 1 3 3
7 7 9 9
7 7 9 9
END
ENDOFINPUT

Sample Output

THESE WINDOWS ARE CLEAN
THESE WINDOWS ARE BROKEN

题意:给出可覆盖的九个窗口,1-9数字表示窗口种类,每个窗口占固定的四个格子,判断窗口的覆盖方式是否合法。分析:窗口的覆盖可以看成是有向的覆盖方式,即窗口可视为点的指向,那么这样一来,就成了有向图,有向图中无环即合法,有环即不合法,拓扑排序判环即可。

拓扑排序核心算法:1.建图,读取每个点的入度,出度,及出度的方向。(指向的点)2.每一次找到入度为0的点,添入队列中,在将其指向点的入度减1,若为0,继续添入队列,直到没有入度为0的点。(这里也可以不用队列操作,对不同题目灵活改变)3.判换,第2步之后如果还有点的入度大于0,那么一定有环。
 1 #include<cstring>
 2 #include<cstdio>
 3 #include<iostream>
 4 #include<algorithm>
 5 #include<queue>
 6 #include<map>
 7 #include<vector>
 8 #include<string>
 9
10 using namespace std;
11
12
13 int dir[][5]={{0,0},{0,1},{1,0},{1,1}};
14 int g[10][10];
15 string s;
16
17 int cur;
18 int in[15];
19 vector<int>out[10];
20
21 void init()
22 {
23     for(int i=0;i<10;i++)  out[i].clear(),in[i]=0;
24
25 }
26
27 void toposort()
28 {
29     queue<int>que;
30     for(int i=1;i<cur;i++)
31        if(in[i]==0) que.push(i);
32
33     while(que.size())
34     {
35         int k=que.front();
36         que.pop();
37
38         in[k]--;
39
40         for(int i=0;i<out[k].size();i++)
41         {
42             in[out[k][i]]--;
43             if(in[out[k][i]]==0) que.push(out[k][i]);
44         }
45     }
46
47     for(int i=1;i<=9;i++)
48     if(in[i]>0) {cout<<"THESE WINDOWS ARE BROKEN"<<endl;return ;}
49
50     cout<<"THESE WINDOWS ARE CLEAN"<<endl;
51 }
52
53 int main()
54 {
55     while(cin>>s&&s!="ENDOFINPUT")
56     {
57         for(int i=0;i<4;i++)
58             for(int j=0;j<4;j++)
59                 cin>>g[i][j];
60
61         cin>>s;
62
63         init();
64
65         cur=1;//用于表示窗口编号
66         for(int i=0;i<3;i++)//扫描每一个窗口,建立有向图,记录入度,出度
67             for(int j=0;j<3;j++)
68         {
69             map<int,int>mp;
70             for(int k=0;k<4;k++)
71             {
72                 int x=i+dir[k][0];
73                 int y=j+dir[k][1];
74                 if(g[x][y]!=cur&&mp[g[x][y]]==0)
75                 {
76                     mp[g[x][y]]=1;//防止重复的窗口覆盖
77                     in[g[x][y]]++;
78                     out[cur].push_back(g[x][y]);
79                 }
80             }
81             cur++;
82         }
83
84         toposort();
85     }
86 }
时间: 2024-10-09 08:12:51

Window Pains POJ 2585的相关文章

poj 2585 Window Pains 解题报告

Window Pains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2027   Accepted: 1025 Description Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one application at a time, he

POJ 2585.Window Pains

Window Pains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1888   Accepted: 944 Description Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one application at a time, he u

poj 2585 Window Pains(拓扑排序)(经典)(困难)

Window Pains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1756   Accepted: 881 Description Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one application at a time, he u

poj 2585 Window Pains 暴力枚举排列

题意: 在4*4的格子中有9个窗体,窗体会覆盖它之下的窗体,问是否存在一个窗体放置的顺序使得最后的结果与输入同样. 分析: 在数据规模较小且不须要剪枝的情况下能够暴力(思路清晰代码简单),暴力一般分为枚举子集(for(s=0;s<1<<n;++s))和枚举排列(next_permutation). 代码: //poj 2585 //sep9 #include <iostream> #include <algorithm> using namespace std;

POJ 2585 Window Pains(拓扑排序&#183;窗口覆盖)

题意  有一个4*4的显示器  有9个程序  每个程序占2*2个格子  他们的位置如图所示  当你运行某个程序时  这个程序就会显示在顶层覆盖其它的程序  给你某个时刻显示器的截图  判断此时电脑是否死机了(出现了不合法的覆盖关系) 拓扑排序的应用  关键是建图  当一个程序A的区域上有其它程序B时  说明A是在B之前运行的  那么我们可以建立一个A<B的拓扑关系  最后判断是否有环就行了  个人认为下标换为0操作起来比较方便  所以都还为了0 #include <cstdio> #in

POJ 2585 Window Pains 题解

链接:http://poj.org/problem?id=2585 题意: 某个人有一个屏幕大小为4*4的电脑,他很喜欢打开窗口,他肯定打开9个窗口,每个窗口大小2*2.并且每个窗口肯定在固定的位置上(见题目上的图),某些窗口可以覆盖另一些窗口(可以脑补).询问给出的电脑屏幕是否是合法的. 分析: 可以预先处理出每个格子应该有哪几个窗口在这上面,将最上面的窗口与其他窗口连边,得到一张图,用拓扑判环,因为这道题太简单了,所以我就写这么短的题解. 代码: 1 #include<iostream>

zoj 2193 poj 2585 Window Pains

拓扑排序. 深刻体会:ACM比赛的精髓之处不在于学了某个算法或数据结构,而在于知道这个知识点但不知道这个问题可以用这个知识去解决!一看题目,根本想不到是拓扑排序.T_T...... #include<stdio.h> #include<string.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; int mapp[50][50]; char

POJ 2585 Window Pains 拓扑排序

poj2585 题意: 有一块4X4的屏幕   屏幕中共有9块固定位置的2X2窗口(相互覆盖)  问窗口是否全部显示正常 题解: 判断所有位置的覆盖情况 如果a覆盖b 则构造一条边edge[b][a]=1    最后得到一个图 这个图一定是无环的   如果有环则表示a覆盖b   b又覆盖a 即显示不正常 代码: #include<cstdio> #include<cstring> #include<iostream> using namespace std; int m

Window Pains

http://poj.org/problem?id=2585 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1614   Accepted: 806 Description Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one applicati