NBA这赛季结束,勇士可惜啊,谁能想到没拿到冠军,库昊也没成为真正的老大,lbl一战封神,所有口水留言都变成羡慕嫉妒恨,哎,我库啊,还是还是看书吧。
ConcurrentSkipListMap说实话,之前还真没注意过,还是看JUC才看到,利用skiplist跳表结构来实现一种有序的map,之前看到的map都是无序。在学习前还是要好好了解下什么是skiplist跳表,的确很不错,利用空间换时间,复杂度为logN,跳表的原理参考http://kenby.iteye.com/blog/1187303,讲的不错,一定要多看几遍,理解不了skiplist,看这个类估计也勉强。
ConcurrentSkipListMap的特点:1.线程安全有序map;2.复杂度logN;3.无锁的map,所以并发量应该比之前的map好些,具体没测。
ConcurrentSkipListMap的结构,看个眼熟先:
*
* Head nodes Index nodes
* +-+ right +-+ +-+
* |2|---------------->| |--------------------->| |->null
* +-+ +-+ +-+
* | down | |
* v v v
* +-+ +-+ +-+ +-+ +-+ +-+
* |1|----------->| |->| |------>| |----------->| |------>| |->null
* +-+ +-+ +-+ +-+ +-+ +-+
* v | | | | |
* Nodes next v v v v v
* +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
* | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
* +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
*
3种节点:Node,Index,HeadIndex,过会再看,还有个东西:
* Notation guide for local variables
* Node: b, n, f for predecessor, node, successor
* Index: q, r, d for index node, right, down.
* t for another index node
* Head: h
* Levels: j
* Keys: k, key
* Values: v, value
* Comparisons: c
这是类中一些变量的说明,因为用的是lock-free list,所以在做各种操作时n多检查,看起来真累。
看下3中节点,Node节点先:
static final class Node<K,V> { final K key; volatile Object value; volatile Node<K,V> next; /** * 正常节点 */ Node(K key, Object value, Node<K,V> next) { this.key = key; this.value = value; this.next = next; } /** * 标记节点,value指向自己.主要是删除一个节点的时候会在该节点后面追加一个标记节点 */ Node(Node<K,V> next) { this.key = null; this.value = this; this.next = next; } /** * compareAndSet value field */ boolean casValue(Object cmp, Object val) { return UNSAFE.compareAndSwapObject(this, valueOffset, cmp, val); } /** * compareAndSet next field */ boolean casNext(Node<K,V> cmp, Node<K,V> val) { return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val); } /** * 是否标记节点,没看到地方用这个 */ boolean isMarker() { return value == this; } /** * 最底层有序list的头结点 * Object BASE_HEADER = new Object() */ boolean isBaseHeader() { return value == BASE_HEADER; } /** * 当前节点的后面追加一个标记节点,删除的时候会把当前节点和标记节点一起删除 */ boolean appendMarker(Node<K,V> f) { return casNext(f, new Node<K,V>(f)); } /** * 是否还记得b,n,f变量,b是当前节点的前驱,n是当前节点,f是后一个节点 * 帮助删除方法?就是如果当前节点后面已经有标记节点那就casnext替换删除,如果没有那就追加一个标记节点 */ void helpDelete(Node<K,V> b, Node<K,V> f) { /* * Rechecking links and then doing only one of the * help-out stages per call tends to minimize CAS * interference among helping threads. */ if (f == next && this == b.next) { if (f == null || f.value != f) // 当前节点后面一个节点不是标记,那就追加一个标记 appendMarker(f); else b.casNext(this, f.next); } } /** * 返回节点的value,如果头结点或标记节点返回null */ V getValidValue() { Object v = value; if (v == this || v == BASE_HEADER) return null; return (V)v; } /** * Creates and returns a new SimpleImmutableEntry holding current * mapping if this node holds a valid value, else null. * @return new entry or null */ AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() { V v = getValidValue(); if (v == null) return null; return new AbstractMap.SimpleImmutableEntry<K,V>(key, v); } // UNSAFE的一些,看起来应该不会陌生了 private static final sun.misc.Unsafe UNSAFE; private static final long valueOffset; private static final long nextOffset; static { try { UNSAFE = sun.misc.Unsafe.getUnsafe(); Class k = Node.class; valueOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("value")); nextOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("next")); } catch (Exception e) { throw new Error(e); } } }
最重要的应该是helpDelete方法吧。javadoc里面有个解释删除一个节点的过程:
* Here‘s the sequence of events for a deletion of node n with
* predecessor b and successor f, initially:
*
* +------+ +------+ +------+
* ... | b |------>| n |----->| f | ...
* +------+ +------+ +------+
*
* 1. CAS n‘s value field from non-null to null.
* From this point on, no public operations encountering
* the node consider this mapping to exist. However, other
* ongoing insertions and deletions might still modify
* n‘s next pointer.
*
* 2. CAS n‘s next pointer to point to a new marker node.
* From this point on, no other nodes can be appended to n.
* which avoids deletion errors in CAS-based linked lists.
*
* +------+ +------+ +------+ +------+
* ... | b |------>| n |----->|marker|------>| f | ...
* +------+ +------+ +------+ +------+
*
* 3. CAS b‘s next pointer over both n and its marker.
* From this point on, no new traversals will encounter n,
* and it can eventually be GCed.
* +------+ +------+
* ... | b |----------------------------------->| f | ...
* +------+ +------+
这个应该都能看懂,就是在要删除的节点后面追加一个标记节点,然后删除的时候将当前节点和标记节点一起从list中断开链接,这其中的操作都是cas操作。
看下Index节点,index节点就是skiplist的层次节点,有down,有right,因为持有的节点值不同和处理方式不同,所以跟node不能抽象:
static class Index<K,V> { final Node<K,V> node; final Index<K,V> down; volatile Index<K,V> right; /** * Creates index node with given values. */ Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) { this.node = node; this.down = down; this.right = right; } /** * compareAndSet right field */ final boolean casRight(Index<K,V> cmp, Index<K,V> val) { return UNSAFE.compareAndSwapObject(this, rightOffset, cmp, val); } /** * 节点是否被删除,因为删除一个index的时候会把index持有的node节点的value cas设置成null */ final boolean indexesDeletedNode() { return node.value == null; } /** * link一个新的后继index,判断了当前index是否被删除,如果是被删除的index,再link就没有意义了 */ final boolean link(Index<K,V> succ, Index<K,V> newSucc) { Node<K,V> n = node; newSucc.right = succ; return n.value != null && casRight(succ, newSucc); } /** * unlink后继index,如果当前是要删除的,就失败 */ final boolean unlink(Index<K,V> succ) { return !indexesDeletedNode() && casRight(succ, succ.right); } // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE; private static final long rightOffset; static { try { UNSAFE = sun.misc.Unsafe.getUnsafe(); Class k = Index.class; rightOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("right")); } catch (Exception e) { throw new Error(e); } } }
HeadIndex继承Index,比index多了个level,skiplist每层的head:
static final class HeadIndex<K,V> extends Index<K,V> { final int level; HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) { super(node, down, right); this.level = level; } }
看下最常用的2个构造:
//headIndex的node节点的value private static final Object BASE_HEADER = new Object(); /** * skipList跳表的最上层第一个入口 */ private transient volatile HeadIndex<K,V> head; /** * 比较器,构造时可以传入,否则为null,使用key默认 */ private final Comparator<? super K> comparator; /** * 随机数种子 */ private transient int randomSeed; //根据构造传入comparator,如果没有,就是用key的默认比较 public ConcurrentSkipListMap() { this.comparator = null; initialize(); } public ConcurrentSkipListMap(Comparator<? super K> comparator) { this.comparator = comparator; initialize(); } //构造调用初始化 final void initialize() { keySet = null; entrySet = null; values = null; descendingMap = null; randomSeed = seedGenerator.nextInt() | 0x0100; // ensure nonzero //这个最重要,head代表整个skiplist入口,构造的时候,新建第一层,index的down和right都null head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null), null, null, 1); } //cas设置head,还是unsafe的底层 private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) { return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val); }
ConcurrentSkipListMap是不支持key、value为null的。接下来看几个常用的方法,跟一下流程。
put方法:
public V put(K key, V value) { if (value == null) throw new NullPointerException(); return doPut(key, value, false); //这里的是false,容许重复,ConcurrentSkipListSet内部使用ConcurrentSkipListMap保存数据,更新的时候用的是true } private V doPut(K kkey, V value, boolean onlyIfAbsent) { Comparable<? super K> key = comparable(kkey); for (;;) { Node<K,V> b = findPredecessor(key); //找到base-level的key节点的前驱node节点,然后顺手删除一些节点 Node<K,V> n = b.next; //还记得b、n、f的意思,b是前驱节点,n是当前节点,f是后继节点 for (;;) { if (n != null) { Node<K,V> f = n.next; if (n != b.next) // skiplistmap是无锁list,所以关键操作都会检查,这里说明存在race,那就break,重新开始 break; Object v = n.value; if (v == null) { // value为null说明n被删除 n.helpDelete(b, f); //n被删除,那就helpdelete,标记-删除,然后重试 break; } if (v == n || b.value == null) // 标记删除,如果n的value跟n一样,那就是标记节点,说明b是被删除的,那就重试 break; int c = key.compareTo(n.key); //上面检查暂时没问题,那就比较key if (c > 0) { 如果要put的key比当前n的大,说明b、n、f需要往后移一个位置,让后重试 b = n; n = f; continue; } if (c == 0) { //key相同 if (onlyIfAbsent || n.casValue(v, value)) // 如果入参为true,不容许替换,那就返回,false容许替换,那就替换value值 return (V)v; else break; // 替换失败就重试 } // else c < 0; fall through } Node<K,V> z = new Node<K,V>(kkey, value, n); //这里新建z指向n if (!b.casNext(n, z)) break; // casnext操作b的next由n指向新插入的z,失败就重试 //在base-level插入新的node后,skiplist跳表需要将新建的node的随机插入其他层,保证i层存在的话,i-1层肯定存在,都是跳表的东西 int level = randomLevel(); //随机生成的level if (level > 0) //如果level大于0那就插入 insertIndex(z, level); return null; } } } //就是如果你构造提供了比较,那么排序的时候key比较就使用你提供的,没有就使用默认的自然排序 private Comparable<? super K> comparable(Object key) throws ClassCastException { if (key == null) throw new NullPointerException(); if (comparator != null) return new ComparableUsingComparator<K>((K)key, comparator); else return (Comparable<? super K>)key; } /** * Compares using comparator or natural ordering. Used when the * ComparableUsingComparator approach doesn't apply. */ int compare(K k1, K k2) throws ClassCastException { Comparator<? super K> cmp = comparator; if (cmp != null) return cmp.compare(k1, k2); else return ((Comparable<? super K>)k1).compareTo(k2); } //找到base-level的key节点的前驱node节点,然后顺手删除一些节点 //基本上就是从head开始向右找,找到比给定的大的,就从大的index的前驱往下找 private Node<K,V> findPredecessor(Comparable<? super K> key) { if (key == null) throw new NullPointerException(); // don't postpone errors for (;;) { Index<K,V> q = head; //从head开始 Index<K,V> r = q.right; //head的right for (;;) { if (r != null) { //r不为null就向右找 Node<K,V> n = r.node; K k = n.key; if (n.value == null) { //value为null,则表示节点已经删除 if (!q.unlink(r)) //节点已经删除,那就从链表中unlink掉 break; // restart 失败就重试 r = q.right; // reread 节点删除后,重置r节点 continue; } if (key.compareTo(k) > 0) { //key大于当前节点的key,就一直往右移动 q = r; r = r.right; continue; } } Index<K,V> d = q.down; //上面找到了一个q节点,这个q的right的key比要找的key大,所以往down开始找 if (d != null) { q = d; //这里就相当于往下移动了一层,然后继续for循环找 r = d.right; } else return q.node; //如果d为null,说明找到了base-level那一层了,那就返回吧 } } } //随机生成的level,0-31 private int randomLevel() { int x = randomSeed; x ^= x << 13; x ^= x >>> 17; randomSeed = x ^= x << 5; if ((x & 0x80000001) != 0) // &一半的机会返回0 return 0; int level = 1; while (((x >>>= 1) & 1) != 0) ++level; //向右移位,在上面一半机会不为0的情况下,&再来一半机会为1,层数越高,机会越小,这样可以保证没那么多数据量还生成n多层 return level; } //在随机生成的level插入index节点 private void insertIndex(Node<K,V> z, int level) { HeadIndex<K,V> h = head; int max = h.level; if (level <= max) { //如果随机生成的level比head的小 Index<K,V> idx = null; //生成一个idx链表,每个down指向下一层的,假如放在3层,那就生成3个index,3层的down指向2层的,2层指向1层,1层的指向null,所有的index的node指向新插入的node for (int i = 1; i <= level; ++i) idx = new Index<K,V>(z, idx, null); //将index链表插入skiplist addIndex(idx, h, level); } else { // Add a new level level = max + 1; //如果随机的level大于已经有的跳表层级,那就增加一层 Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1]; Index<K,V> idx = null; for (int i = 1; i <= level; ++i) idxs[i] = idx = new Index<K,V>(z, idx, null); //一个index数组 HeadIndex<K,V> oldh; int k; for (;;) { oldh = head; //原有的head和层级 int oldLevel = oldh.level; if (level <= oldLevel) { // 这里可能有其他线程已经添加了一层了,所以不需要再新增一层 k = level; break; } //下面是将新创建一个headIndex,并将down指向原来的headindex,right指向数组对应j的index,层级j HeadIndex<K,V> newh = oldh; Node<K,V> oldbase = oldh.node; for (int j = oldLevel+1; j <= level; ++j) newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j); if (casHead(oldh, newh)) { //cas替换跳表的head k = oldLevel; break; } } addIndex(idxs[k], oldh, k); //在for循环里面是新增层级的添加index,这里就是其他层级的index添加 } } /** * 将indexs插入skiplist */ private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) { // Track next level to insert in case of retries int insertionLevel = indexLevel; Comparable<? super K> key = comparable(idx.node.key); if (key == null) throw new NullPointerException(); // 过程类似findPredecessor for (;;) { int j = h.level; Index<K,V> q = h; Index<K,V> r = q.right; Index<K,V> t = idx; for (;;) { if (r != null) { //往右寻找key的位置 Node<K,V> n = r.node; // compare before deletion check avoids needing recheck int c = key.compareTo(n.key); if (n.value == null) { //n删除,前驱节点断开当前节点n if (!q.unlink(r)) break; r = q.right; continue; } if (c > 0) { q = r; r = r.right; continue; } } if (j == insertionLevel) { //在某层找到了位置,就看下跳表的层级j和待插入的层次是否一样 // 待插入index是删除的,return if (t.indexesDeletedNode()) { findNode(key); // findNode方法会返回key的node,会顺手删除一些节点 return; } if (!q.link(r, t)) //待插入index没被删除,那就把前驱节点的right换成待插入的,失败就重试 break; // restart if (--insertionLevel == 0) { //待插入的为0了,那就是不需要再插入了 // need final deletion check before return if (t.indexesDeletedNode()) //这里最后再检查下待插入index是否删除了 findNode(key); return; } } if (--j >= insertionLevel && j < indexLevel) t = t.down; //这里就是待插入的index指向down,下次再插入的index就是待插入index下一层了 q = q.down; //基本就是一层结束,然后down到下一层 r = q.right; } } } //返回key的node,过程类似findPredecessor private Node<K,V> findNode(Comparable<? super K> key) { for (;;) { Node<K,V> b = findPredecessor(key); Node<K,V> n = b.next; for (;;) { if (n == null) return null; Node<K,V> f = n.next; if (n != b.next) // inconsistent read break; Object v = n.value; if (v == null) { // n is deleted n.helpDelete(b, f); break; } if (v == n || b.value == null) // b is deleted break; int c = key.compareTo(n.key); if (c == 0) return n; if (c < 0) return null; b = n; n = f; } } }
put方法基本就是现在base-level上找到前驱节点,然后插入节点,然后随机生成要插入的层级,如果比当前的小,就直接创建从上到下的index链,分别插入对应层级,如果大于当前,那么当前的就层级加1,然后生成数组,每个元素对应对应层级的链表,新创建一个headIndex,down指向原来的head,right指向数组对应的层级,最后用数组的对应的层级加入跳表对应的层级。代码看不懂,就多看,多想,真没其他好办法。
看下get()方法:
public V get(Object key) { return doGet(key); } private V doGet(Object okey) { Comparable<? super K> key = comparable(okey); /* * 容许重试 */ for (;;) { Node<K,V> n = findNode(key); if (n == null) return null; Object v = n.value; if (v != null) return (V)v; } }
我看的这个jdk版本doGet方法有的不一样,直接使用findNode获得node,没有像参考里面那哥们看的那版把所有find的过程都写在doGet的for()里面。
remove()方法:
public V remove(Object key) { return doRemove(key, null); } final V doRemove(Object okey, Object value) { Comparable<? super K> key = comparable(okey); for (;;) { Node<K,V> b = findPredecessor(key); Node<K,V> n = b.next; for (;;) { if (n == null) return null; Node<K,V> f = n.next; if (n != b.next) // inconsistent read break; Object v = n.value; if (v == null) { // n is deleted n.helpDelete(b, f); break; } if (v == n || b.value == null) // b is deleted break; int c = key.compareTo(n.key); if (c < 0) return null; if (c > 0) { b = n; n = f; continue; } if (value != null && !value.equals(v)) return null; if (!n.casValue(v, null)) //设置value为null,之前一直看到检测value==null来判断节点是否被删除 break; if (!n.appendMarker(f) || !b.casNext(n, f)) findNode(key); // Retry via findNode else { findPredecessor(key); // Clean index if (head.right == null) tryReduceLevel(); //right==null时有可能需要减少层级 } return (V)v; } } } //减少层级,就是如果最高的连着3层都没有right都没有链接index,那就尝试cashead减少一层,然后recheck之前的head的right是否null, //有可能有race导致这会又不会null,那就再casHead设置回来 private void tryReduceLevel() { HeadIndex<K,V> h = head; HeadIndex<K,V> d; HeadIndex<K,V> e; if (h.level > 3 && (d = (HeadIndex<K,V>)h.down) != null && (e = (HeadIndex<K,V>)d.down) != null && e.right == null && d.right == null && h.right == null && casHead(h, d) && // try to set h.right != null) // recheck casHead(d, h); // try to backout }
最后看下size(),javadoc直接因为是无锁的list,说结果不一定准,所以这个方法不一定有用,太任性了:
public int size() { long count = 0; for (Node<K,V> n = findFirst(); n != null; n = n.next) { if (n.getValidValue() != null) ++count; } return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count; } Node<K,V> findFirst() { for (;;) { Node<K,V> b = head.node; Node<K,V> n = b.next; if (n == null) return null; if (n.value != null) return n; //直接找到第一个value不为null的就return n.helpDelete(b, n.next); } }
看代码也能看出来,找到第一个value不为null的,然后从这个开始累加,因为free-lock,并发线程多的话,节点变动频繁,悲剧估计会经常发生。
ConcurrentSkipListMap的其他方法不想看了,都差不多。这个类看起来真累,主要是因为是跳表结构的,不太熟悉,而且又用的是lock-free的,所以在做各种操作的时候,总是检查链表的结构啊,节点是否被删除啊这些,没事还帮着清理下删除的node。
ConcurrentSkipListSet初始化的时候持有ConcurrentSkipListMap变量,然后add的时候:
public boolean add(E e) { return m.putIfAbsent(e, Boolean.TRUE) == null; }
最后到ConcurrentSkipListMap:
public V putIfAbsent(K key, V value) { if (value == null) throw new NullPointerException(); return doPut(key, value, true); }
还记得skiplistmap的put是doput(key,value,false),最后一个putIfAbsent决定如果key对应的node存在是否还要替换,true不替换,false替换。skiplistset直接返回值。skiplistSet中其他的方法都类似的。
参考:
http://kenby.iteye.com/blog/1187303 跳表的原理
http://brokendreams.iteye.com/blog/2253955 源码分析,很nb的一个juc系列文章,基本上跟着看的