Naive Bayes for Text Classification

TF-IDF Algorithm


  From http://www.ruanyifeng.com/blog/2013/03/tf-idf.html

Chapter 1, 知道了"词频"(TF)和"逆文档频率"(IDF)以后,将这两个值相乘,就得到了一个词的TF-IDF值。某个词对文章的重要性越高,它的TF-IDF值就越大。



(1) 出现次数最多的词是----"的"、"是"、"在"----这一类最常用的词。它们叫做"停用词"(stop words),表示对找到结果毫无帮助、必须过滤掉的词。

(2) 我们需要一个重要性调整系数,衡量一个词是不是常见词。如果某个词比较少见,但是它在这篇文章中多次出现,那么它很可能就反映了这篇文章的特性,正是我们所需要的关键词。

(3) 在词频的基础上,要对每个词分配一个"重要性"权重。

  • 最常见的词("的"、"是"、"在")给予最小的权重,
  • 较常见的词("中国")给予较小的权重,
  • 较少见的词("蜜蜂"、"养殖")给予较大的权重。

这个权重叫做"逆文档频率"(Inverse Document Frequency,缩写为IDF),它的大小与一个词的常见程度成反比。

Chapter 2, steps



Step 1,计算词频

考虑到文章有长短之分,为了便于不同文章的比较,进行"词频"标准化。

或者

Step 2,计算逆文档频率

这时,需要一个语料库(corpus),用来模拟语言的使用环境。

          log(Amount_in_each_class <constant> / (number of files with the word + 1) )

如果一个词越常见,那么分母就越大,逆文档频率就越小越接近0。分母之所以要加1,是为了避免分母为0(即所有文档都不包含该词)。log表示对得到的值取对数。

Step 3,计算TF-IDF

可以看到,TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比。所以,自动提取关键词的算法就很清楚了,就是计算出文档的每个词的TF-IDF值,然后按降序排列,取排在最前面的几个词。

优点 是简单快速,结果比较符合实际情况。

缺点 是,单纯以"词频"衡量一个词的重要性,不够全面,

  • 重要的词可能出现次数并不多。
  • 这种算法无法体现词的位置信息,出现位置靠前的词与出现位置靠后的词,都被视为重要性相同,这是不正确的。可以对全文的第一段和每一段的第一句话,给予较大的权重。

余弦相似性



  From http://www.ruanyifeng.com/blog/2013/03/cosine_similarity.html

先从简单的句子着手。

  句子A:我喜欢看电视,不喜欢看电影。

  句子B:我不喜欢看电视,也不喜欢看电影。

基本思路是:如果这两句话的用词越相似,它们的内容就应该越相似。因此,可以从词频入手,计算它们的相似程度。

Step 1,分词。

  句子A:我/喜欢/看/电视,不/喜欢/看/电影。

  句子B:我/不/喜欢/看/电视,也/不/喜欢/看/电影。

Step 2,列出所有的词。

  我,喜欢,看,电视,电影,不,也。

Step 3,计算词频。

  句子A:我 1,喜欢 2,看 2,电视 1,电影 1,不 1,也 0。

  句子B:我 1,喜欢 2,看 2,电视 1,电影 1,不 2,也 1。

Step 4,写出词频向量。

  句子A:[1, 2, 2, 1, 1, 1, 0]

  句子B:[1, 2, 2, 1, 1, 2, 1]

到这里,问题就变成了如何计算这两个向量的相似程度。

两条线段之间形成一个夹角,我们可以通过夹角的大小,来判断向量的相似程度。夹角越小,就代表越相似。

  • 如果夹角为0度,意味着方向相同、线段重合;
  • 如果夹角为90度,意味着形成直角,方向完全不相似;
  • 如果夹角为180度,意味着方向正好相反。// impossible

以二维空间为例,上图的a和b是两个向量,我们要计算它们的夹角θ。余弦定理告诉我们,可以用下面的公式求得:

   

假定a向量是[x1, y1],b向量是[x2, y2],那么可以将余弦定理改写成下面的形式:

  

数学家已经证明,余弦的这种计算方法对n维向量也成立。假定A和B是两个n维向量,A是 [A1, A2, ..., An] ,B是 [B1, B2, ..., Bn] ,则A与B的夹角θ的余弦等于:

  

使用这个公式,我们就可以得到,句子A与句子B的夹角的余弦。

  

余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。所以,上面的句子A和句子B是很相似的,事实上它们的夹角大约为20.3度。

由此,我们就得到了"找出相似文章"的一种算法:

  (1)使用TF-IDF算法,找出两篇文章的关键词;

  (2)每篇文章各取出若干个关键词(比如20个),合并成一个集合,计算每篇文章对于这个集合中的词的词频(为了避免文章长度的差异,可以使用相对词频);

  (3)生成两篇文章各自的词频向量;

  (4)计算两个向量的余弦相似度,值越大就表示越相似。

"余弦相似度"是一种非常有用的算法,只要是计算两个向量的相似程度,都可以采用它。

Multinomial Naive Bayes



  from http://blog.csdn.net/ehomeshasha/article/details/35988111

时间: 2024-11-04 04:22:11

Naive Bayes for Text Classification的相关文章

Naive Bayes Classification

Naive Bayes Classification

6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python)

6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python) Introduction Here’s a situation you’ve got into: You are working on a classification problem and you have generated your set of hypothesis, created features and discussed the importanc

ML | Naive Bayes

what's xxx In machine learning, naive Bayes classifiers are a family of simple probabilistic classifiers based on applying Bayes' theorem with strong (naive) independence assumptions between the features. Naive Bayes is a popular (baseline) method fo

Naive Bayes 笔记

Naive Bayes (朴素贝叶斯) 属于监督学习算法, 它通过计算测试样本在训练样本各个分类中的概率来确定测试样本所属分类, 取最大概率为其所属分类.  优点  在数据较少的情况下仍然有效,可以处理多类别问题  缺点  对输入数据的准备方式较为敏感  适用数据类型  标称型 基础概念1. 条件概率 P(A|B) 表示事件B已经发生的前提下, 事件A发生的概率, 即事件B发生下事件A的条件概率.计算公式为: 2. 贝叶斯公式当 P(A|B) 比较容易计算, P(B|A) 比较难以计算时, 可以

Naive Bayes在mapreduce上的实现

Naive Bayes是比较常用的分类器,因为思想比较简单.之所以说是naive,是因为他假设用于分类的特征在类确定的条件下是条件独立的,这个假设使得分类变得很简单,但会损失一定的精度. 具体推导可以看<统计学习方法> 经过推导我们可知y=argMaxP(Y=ck)*P(X=x|Y=ck).那么我们需要求先验概率也就是P(Y=ck)和求条件概率p(X=x|Y=ck). 具体的例子以:http://blog.163.com/[email protected]/blog/static/171232

Naive Bayes、神经网络初步、SVM

PART 1    Naive Bayes 还是上节课说过的垃圾邮件分类问题,分为两种事件模型: 1.1.多变量Bernouli事件模型 [就是上节课介绍的 维护一个长长长长长的dictionary 对于某个样本(x,y),x[i]=0or1表示dictionary第i个词是否在样本邮件中出现过,y=0or1表示样本是不是垃圾邮件 在这个模型中,Xi取值只有0or1,因此 $x_{i} | y$ 是Bernouli分布 $ANS= P\left( y\right) \prod ^{n}_{i=1

基于Naive Bayes算法的文本分类

理论 什么是朴素贝叶斯算法? 朴素贝叶斯分类器是一种基于贝叶斯定理的弱分类器,所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关.举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果可以被判定为是苹果.尽管这些特征相互依赖或者有些特征由其他特征决定,然而朴素贝叶斯分类器认为这些属性在判定该水果是否为苹果的概率分布上独立的. 朴素贝叶斯分类器很容易建立,特别适合用于大型数据集,众所周知,这是一种胜过许多复杂算法的高效分类方法. 贝叶斯公式提供了计算后验概率P(X|Y)的方式: 其

机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)

朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/60140664.在这里,我按自己的理解再整理一遍. 在机器学习中,我们有时需要解决分类问题.也就是说,给定一个样本的特征值(feature1,feature2,...feauren),我们想知道该样本属于哪个分类标签(label1,label2,...labeln).即:我们想要知道该样本各个标签的条件概

Character-level Convolutional Networks for Text Classification

Abstract Semantic word spaces have been very useful but cannot express the meaning of longer phrases in a principled way. 语义词空间是非常有用的,但它不能有原则地表达较长短语的意义. Further progress towards understanding compositionality in tasks such as sentiment detection requ