从JMS到KafKa

从JMS到KafKa

JMS

1JMS概念

JMS(Java Message Service,java消息服务)API是一个消息服务的标准或者说是规范,允许应用程序组件基于JavaEE平台创建、发送、接收和读取消息。它使分布式通信耦合度更低,消息服务更加可靠以及异步性。

2)消息模型

P2P:发送端将消息发送到消息队列(使用什么样的消息队列最优?),不用管接收端的行为,接受端只需要去消息队列中取消息,如果有消息就取出来进行消费,没有就进行等待。

图1:P2P模型

Publish-Subscribe:发布者和订阅者之间有时间上的依赖性。针对某个主题(Topic)的订阅者,它必须创建一个订阅者之后,才能消费发布者的消息,而且为了消费消息,订阅者必须保持运行的状态

图2:发布者-订阅者

KafKa

(1)   KafKa的概念

Kafka是Linkedin于2010年12月份开源的消息系统,是一个高性能,高可用,可持久化的,为分布式设计的消息中间件。

Kafka的集群算法做的很先进,大大强于ActiveMQ。ActiveMQ只有主从互备的HA,负载均衡做的不好,没有消息分片。而Kafka在HA,负载均衡和消息分片上做的很完美。

(2)   目标

1、消息数据保存在磁盘,存取代价为O(1)。一般数据在磁盘上是使用BTree存储的,存取代价为O(lgn)

2、高吞吐率。在普通的节点上,单机每秒10W消息读写

3、支持分布式,所有的producer、broker和consumer都会有多个,均为分布式的。

4、支持数据并行加载到Hadoop中。

(3)   相关概念

1、Topics/logs

一个Topic可以认为是一类消息,每个topic将被分成多个partition的消息都会被直接追加到log文件的尾部,每条消息在文件中的位置称为offset(偏移量),offset为一个long型数字,它是唯一的标记一条消息。kafka没有提供索引机制来存储offset,因为kafka中不对消息进行“随机读写”。

kafka和ActiveMQ不同的是:即使消息被消费,消息仍然不会被立即删除,日志文件将会根据broker中的配置要求,保留一定的时间之后删除;比如log文件保留2天,之后不管消息是否被消费,文件都会被删除。可以达到减少磁盘IO开支的效果。

2、Partitions

每个server(kafka实例)负责partitions中消息的读写操作;此外kafka还可以配置partitions需要备份的个数(replicas),每个partition将会被备份到多台机器上,以提高可用性。每个partition都有一个server为“leader”;leader负责所有的读写操作,如果leader失效,那么将会有其他follower来接管(成为新的leader);follower只是简单的跟进与leader,同步消息即可。leader server承载了全部的请求压力,因此从集群整体考虑,有多少个partitions就有多少个leader,kafka将leader均衡分散在每个实例上,确保整体的性能稳定。

3、Producers

将消息发布到指定的Topic中,同时Producer也能决定将消息归属到哪个partitions,比如基于“round-robin”方式,或者通过其他的一些算法等。

4、Consumers

每个consumer属于一个consumer group。发送到Topic的消息,只会被订阅此Topic的每个group中的一个consumer消费。

如果所有的consumer都具有相同的group(属于queue模式),消息将会在consumer之间负载均衡。

如果所有的consumer都具有不同的group(属于“发布-订阅”模式),消息将会广播给所有的消费者。

一个partition中的消息只会被group中的一个consumer消费,一个consumer可以消费多个partitions中的消息。kafka只能保证一个partitions中的消息被某个consumer消费是顺序的。

kafka的设计原理决定,对于一个topic,同一个group中不能有多余partitions个数的consumer同时消费,否则将某些consumer无法得到消息。

(4)   KafKa的部署结构

图3:KafKa集群结构图

1、message(消息)是通信的基本单位,每个producer可以向一个topic(主题)发布一些消息。如果consumer订阅了这个主题,那么新发布的消息就会广播给这些consumer。

2、Kafka是显式分布式的,多个producer、consumer和broker可以运行在一个大的集群上,作为一个逻辑整体对外提供服
务。对于consumer,多个consumer可以组成一个group,这个message只能传输给某个group中的某一个consumer.

(5)   大数据架构:flume-ng+Kafka+Storm+HDFS 实时系统组合

1)数据采集:负责从各节点上实时采集数据,选用cloudera的flume来实现

2)数据接入:由于采集数据的速度和数据处理的速度不一定同步,因此添加一个消息中间件来作为缓冲,选用apache的kafka

3)流式计算:对采集到的数据进行实时分析,选用apache的storm

4)数据输出:对分析后的结果持久化,暂定用mysql

图4:大数据消息处理解决方案

时间: 2024-10-15 07:23:59

从JMS到KafKa的相关文章

Solr vs. Elasticsearch谁是开源搜索引擎王者

当前是云计算和数据快速增长的时代,今天的应用程序正以PB级和ZB级的速度生产数据,但人们依然在不停的追求更高更快的性能需求.随着数据的堆积,如何快速有效的搜索这些数据,成为对后端服务的挑战.本文,我们将比较业界两个最流行的开源搜索引擎,Solr和ElasticSearch.两者都建立在Apache Lucene开源平台之上,它们的主要功能非常相似,但是在部署的易用性,可扩展性和其他功能方面也存在巨大差异. 关于Apache Solr Apache Solr基于业界大名鼎鼎的java开源搜索引擎L

消息队列的流派之争

这篇文章的标题很难起,网上一翻全是各种MQ的性能比较,很容易让人以为我也是这么"粗俗"的人(o(╯□╰)o).我这篇文章想要表达的是-- 它们根本不是一个东西,有毛的性能好比较? MQ是什么 Message Queue(MQ),消息队列中间件.很多人都说: MQ通过将消息的发送和接收分离来实现应用程序的异步和解偶 ,这个给人的直觉是--MQ是异步的,用来解耦的,但是这个只是MQ的效果而不是目的.MQ真正的目的是为了 通讯 ,屏蔽底层复杂的通讯协议,定义了一套应用层的.更加简单的通讯协议

开源搜索引擎

开源搜索引擎 当前是云计算和数据快速增长的时代,今天的应用程序正以PB级和ZB级的速度生产数据,但人们依然在不停的追求更高更快的性能需求.随着数据的堆积,如何快速有效的搜索这些数据,成为对后端服务的挑战.本文,我们将比较业界两个最流行的开源搜索引擎,Solr和ElasticSearch.两者都建立在Apache Lucene开源平台之上,它们的主要功能非常相似,但是在部署的易用性,可扩展性和其他功能方面也存在巨大差异. 关于Apache Solr Apache Solr基于业界大名鼎鼎的java

大数据精英实战项目班-Hadoop-Spark-真实企业项目

2018最新最全大数据技术视频,项目视频.整套视频,非那种杂七杂八自己拼凑的,内容如下,需要的联系QQ:3164282908(加Q注明大数据) 更有海量大数据技术视频.大数据项目视频,机器学习深度学习技术视频.项目视频.Python编程视频.Oracle数据库视频.Java培训视频高级架构师视频等等等. ├----------01-大数据Java基础------------- │├java第01天 ││├java第01天-01.类型转换.avi ││├java第01天-02.归档分析与实现.av

转 Solr vs. Elasticsearch谁是开源搜索引擎王者

转 https://www.cnblogs.com/xiaoqi/p/6545314.html 当前是云计算和数据快速增长的时代,今天的应用程序正以PB级和ZB级的速度生产数据,但人们依然在不停的追求更高更快的性能需求.随着数据的堆积,如何快速有效的搜索这些数据,成为对后端服务的挑战.本文,我们将比较业界两个最流行的开源搜索引擎,Solr和ElasticSearch.两者都建立在Apache Lucene开源平台之上,它们的主要功能非常相似,但是在部署的易用性,可扩展性和其他功能方面也存在巨大差

搞懂分布式技术20:消息队列因何而生

搞懂分布式技术20:消息队列因何而生 消息队列已经逐渐成为企业IT系统内部通信的核心手段.它具有低耦合.可靠投递.广播.流量控制.最终一致性等一系列功能,成为异步RPC的主要手段之一. 当今市面上有很多主流的消息中间件,如老牌的ActiveMQ.RabbitMQ,炙手可热的Kafka,阿里巴巴自主开发的Notify.MetaQ.RocketMQ等. 本文不会一一介绍这些消息队列的所有特性,而是探讨一下自主开发设计一个消息队列时,你需要思考和设计的重要方面.过程中我们会参考这些成熟消息队列的很多重

1.RabbitMQ工作模型与基本原理

1.了解 MQ 的本质和 RabbitMQ 的特性: 2.掌握 RabbitMQ 的 Java API 编程和 Spring 集成 RabbitMQ 1. MQ 了解 1.1. 消息队列简介 1.1.1.MQ 的诞生历程 我们要去用 MQ,先来了解一下 MQ 是怎么诞生的,这样对于它解决了什么问题理解会更加深刻.世界上第一个 MQ 叫什么名字,是什么时候诞生的? 1983 年的时候,有个在 MIT 工作的印度小伙突发奇想,以前我们的软件相互通信,都是点对点的,而且要实现相同的协议,能不能有一种专

Flume的Source、Sink总结,及常用使用场景

数据源Source RPC异构流数据交换 Avro Source Thrift Source 文件或目录变化监听 Exec Source Spooling Directory Source Taildir Source MQ或队列订阅数据持续监听 JMS Source SSL and JMS Source Kafka Source Network类数据交换 NetCat TCP Source NetCat UDP Source HTTP Source Syslog Sources Syslog

rabbitMQ、activeMQ、zeroMQ、Kafka、Redis 比较

Kafka作为时下最流行的开源消息系统,被广泛地应用在数据缓冲.异步通信.汇集日志.系统解耦等方面.相比较于RocketMQ等其他常见消息系统,Kafka在保障了大部分功能特性的同时,还提供了超一流的读写性能. 针对Kafka性能方面进行简单分析,相关数据请参考:https://segmentfault.com/a/1190000003985468,下面介绍一下Kafka的架构和涉及到的名词: Topic:用于划分Message的逻辑概念,一个Topic可以分布在多个Broker上. Parti