uboot之uboot.lds文件分析

OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")

/*指定输出可执行文件是elf格式,32位ARM指令,小端*/
OUTPUT_ARCH(arm)

/*指定输出可执行文件的平台为ARM*/
ENTRY(_start)

/*指定输出可执行文件的起始代码段为_start*/
SECTIONS
{

/*指定可执行image文件的全局入口点,通常这个地址都放在ROM(flash)0x0位置。必须使编译器知道这个地址,通常都是修改此处来完成*/
 . = 0x00000000;/*;从0x0位置开始*/
 . = ALIGN(4);/*代码以4字节对齐*/
 .text :
 {
  cpu/arm920t/start.o (.text)

/*代码的第一个代码部分*/  
  *(.text)

/*下面依次为各个text段函数*/
 }
 . = ALIGN(4);

/*代码以4字节对齐*/
 .rodata : { *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.rodata*))) }

/*指定只读数据段*/
 . = ALIGN(4);

/*代码以4字节对齐*/
 .data : { *(.data) }
 . = ALIGN(4);

/*代码以4字节对齐*/
 .got : { *(.got) }

/*指定got段, got段是uboot自定义的一个段, 非标准段*/
 . = .;
 __u_boot_cmd_start = .;

/*把__u_boot_cmd_start赋值为当前位置, 即起始位置*/
 .u_boot_cmd : { *(.u_boot_cmd) }

/*指定u_boot_cmd段, uboot把所有的uboot命令放在该段.*/
 __u_boot_cmd_end = .;

/*把__u_boot_cmd_end赋值为当前位置,即结束位置*/
 . = ALIGN(4);

/*代码以4字节对齐*/
 __bss_start = .;

/*把__bss_start赋值为当前位置,即bss段的开始位置*/
 .bss (NOLOAD) : { *(.bss) . = ALIGN(4); }

/*指定bss段,告诉加载器不要加载这个段*/
 __bss_end = .;

/*把_end赋值为当前位置,即bss段的结束位置*/
}

看完上面的解析思路本来应该是很清晰的,于是乎编译u-boot,查看一下System.map,

30100000 T _start

30100020 t _undefined_instruction

30100024 t _software_interrupt

30100028 t _prefetch_abort

3010002c t _data_abort

30100030 t _not_used

30100034 t _irq

30100038 t _fiq

发现 _start 的链接地址不是u-boot.lds中.text 的当前地址0x00000000,而是0x30100000,这就产生很多疑问了:

(1)     为什么u-boot.lds指定的 .text 的首地址不起作用?

(2)     0x30100000是什么地址,由谁指定.text的首地址是0x30100000的呢?

(3)     假如有其他动作改变了 .text 的首地址,那么该动作跟u-boot.lds的优先级又是怎么决定的呢?

其实这三个问题都在Makefile的LDFLAGS 变量和u-boot.lds 中找到答案。我们不妨试着修改一下u-boot.lds,把u-boot.lds修改成如下(红色字体部分为修改过部分):

OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")

/*指定输出可执行文件是elf格式,32位ARM指令,小端*/
OUTPUT_ARCH(arm)

/*指定输出可执行文件的平台为ARM*/
ENTRY(_start)

/*指定输出可执行文件的起始代码段为_start*/
SECTIONS
{

/*指定可执行image文件的全局入口点,通常这个地址都放在ROM(flash)0x0位置。必须使编译器知道这个地址,通常都是修改此处来完成*/
 . = 0x30000000;/*;从0x0位置开始*/
 . = ALIGN(4);/*代码以4字节对齐*/

.rodata : { *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.rodata*))) }
 . = ALIGN(4);

/*代码以4字节对齐*/

.text :
 {
  cpu/arm920t/start.o (.text)

/*代码的第一个代码部分*/  
  *(.text)

/*下面依次为各个text段函数*/
 }

/*指定只读数据段*/
 . = ALIGN(4);

/*代码以4字节对齐*/
 .data : { *(.data) }
 . = ALIGN(4);

/*代码以4字节对齐*/
 .got : { *(.got) }

/*指定got段, got段是uboot自定义的一个段, 非标准段*/
 . = .;
 __u_boot_cmd_start = .;

/*把__u_boot_cmd_start赋值为当前位置, 即起始位置*/
 .u_boot_cmd : { *(.u_boot_cmd) }

/*指定u_boot_cmd段, uboot把所有的uboot命令放在该段.*/
 __u_boot_cmd_end = .;

/*把__u_boot_cmd_end赋值为当前位置,即结束位置*/
 . = ALIGN(4);

/*代码以4字节对齐*/
 __bss_start = .;

/*把__bss_start赋值为当前位置,即bss段的开始位置*/
 .bss (NOLOAD) : { *(.bss) . = ALIGN(4); }

/*指定bss段,告诉加载器不要加载这个段*/
 __bss_end = .;

/*把_end赋值为当前位置,即bss段的结束位置*/
}

上面对u-boot.lds主要做了两点修改

(1)     把0x00000000 改成 0x30000000。

(2)     把 .text 和 .rodata 存放的地址调换了位置。

重新编译 u-boot, 查看System.map

30000000 R version_string

30000028 r C.27.2365

.

.

.

30100000 T _start

30100020 t _undefined_instruction

.

.

.

从上面的System.map部分内容可以看出:

(1)     u-boot.lds设定的地址(0x00000000或0x30000000)是有效的。

(2)     .text的地址仍然是30100000

跟着我们查看Makefile中的LDFLAGS变量,发现一条指令

LDFLAGS += -Ttext $(TEXT_BASE)  其中TEXT_BASE 是在u-boot根目录的board文件夹的对应的开发板名字的子目录下的config.mk文件中定义的

TEXT_BASE = 0x30100000

看到这里我们应该明白为什么_start,也就是.text的首地址总是等于0x30100000了,在连接的时候ld命令会把参数-Ttext指定的地址赋给.text,所以.text在u-boot.lds中的默认地址(当前地址)不起作用了。

时间: 2024-10-07 09:08:28

uboot之uboot.lds文件分析的相关文章

u-boot start.S启动文件分析

u-boot start.S启动文件分析 u-bootstart.SBL1 u-boot start.S启动文件分析 一.start.S来源 1.为何要分析start.S 2.start.S的来源 3.头文件包含 二.start.S分析 1.Start.S分析 16字节校验头 异常向量表 16字节内存对齐 设置CPU为SVC模式 L2 cache操作 Invalidate L1 I/D 关掉MMU 读取启动引脚信息 第一次设置栈 ./board/samsung/x210/lowlevel_ini

arm处理器的u-boot.lds文件分析

1)u-boot的实现分为stage1与stage2两个阶段,其中依赖与CPU体系结构的代码通常都是放在stage1里,并且通常用汇编语言实现.stage2通常用C语言实现,可以实现更加复杂的功能,并且有更好的移植性与可读性. 2)U-Boot 的 Stage1 通常是在 start.S 文件中实现,并且都是用汇编语言编写.一个可执行性 image 文件必须有一个入口点, 并且只能有一个全局入口点, 通常这个入口点的地址放在 ROM(Flash)0x0 位置,因此必须使编译器知道这个入口地址,该

U-boot.lds文件分析

1 OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm") 2 OUTPUT_ARCH(arm) 3 ENTRY(_start) lds文件位于board/samsung/smdk6410/u-boot-nand.lds下. 指定elf32-littlearm 格式,即指定输出文件是elf格式,32位ARM指令,小端模式: 紧接着OUTPUT_ARCH(arm)

u-boot.lds文件简介

可执行文件由许多链接在一起的对象文件组成.对象文件有许多节,如文本.数据.init 数据.bss等.这些对象文件都是由一个称为 链接器脚本(*lds)的文件链接并装入的.这个链接器脚本的功能是将输入对象文件的各节映射到输出文件中:换句话说,它将所有输入对象文件都链接到单一的可执行文件中,将该可执行文件的各节装入到指定地址处. 因此在分析u-boot代码是,首先应关注的是u-boot.lds文件,它位于$(U-BOOT_SRC_ROOT)/board/$(BOARD_NAME)目录下. 1 /*

uboot移植之九鼎提供的uboot的文件分析

文件分析 (1).gitignore:git管理工具相关的文件. (2)arm_config.mk:一个Makefile文件,将来会被Makefile里面的某句代码调用. (3)CHANGELOG.Changelog_Samsung.CHANGELOG-before-U-Boot-1.1.5:三个CHANELOG文件,其实就是该版本的uboot的变迁记录. (4)config.mk:一个Mkaefile文件,将会在Makefile里面被调用. (5)COPYING:版权,uboot是GPL版权,

uboot移植——uboot源码目录分析

uboot移植(一)--uboot源码目录分析 本文分析的uboot是九鼎官方提供的,是对应s5pv210开发板x210bv3的uboot 一:uboot的概念及移植的原理. uboot就是在内核运行前的一段小程序,用来初始化硬件设备,建立内存空间映射图.从而将系统的软硬件带到合适的状态,主要功能就是为了启动内核,它将内核从flash中拷贝到ddr中,然后跳转到内核入口中,交由内核控制权,uboot严重依赖硬件,因此一个通用的uboot不太可能. 移植原理:uboot中有很多平行代码,各自属于各

u-boot的Makefile语法教程分析

U-BOOT是一个LINUX下的工程,在编译之前必须已经安装对应体系结构的交叉编译环境,这里只针对ARM,编译器系列软件为arm-linux-*. U-BOOT的下载地址: http://sourceforge.net/projects/u-boot我下载的是1.1.6版本,一开始在FTP上下载了一个次新版,结果编译失败.1.1.6是没问题的. u-boot源码结构    解压就可以得到全部u-boot源程序.在顶层目录下有18个子目录,分别存放和管理不同的源程序.这些目录中所要存放的文件有其规

uboot的relocation原理详细分析

最近在一直在做uboot的移植工作,uboot中有很多值得学习的东西,之前总结过uboot的启动流程,但uboot一个非常核心的功能没有仔细研究,就是uboot的relocation功能. 这几天研究下uboot的relocation功能,记录在此,跟大家共享. 所谓的relocation,就是重定位,uboot运行后会将自身代码拷贝到sdram的另一个位置继续运行,这个在uboot启动流程分析中说过. 但基于以前的理解,一个完整可运行的bin文件,link时指定的链接地址,load时的加载地址

嵌入式linux开发uboot移植(三)——uboot启动过程源码分析

嵌入式linux开发uboot移植(三)--uboot启动过程源码分析 一.uboot启动流程简介 与大多数BootLoader一样,uboot的启动过程分为BL1和BL2两个阶段.BL1阶段通常是开发板的配置等设备初始化代码,需要依赖依赖于SoC体系结构,通常用汇编语言来实现:BL2阶段主要是对外部设备如网卡.Flash等的初始化以及uboot命令集等的自身实现,通常用C语言来实现. 1.BL1阶段 uboot的BL1阶段代码通常放在start.s文件中,用汇编语言实现,其主要代码功能如下: