ZOJ 2158 && POJ 1789 Truck History (经典MST)

链接:http://poj.org/problem?id=1789 或  http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1158

Description

Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vegetable delivery, other for furniture, or for bricks. The company has its own code describing each type of a truck. The code is simply a string of exactly seven lowercase
letters (each letter on each position has a very special meaning but that is unimportant for this task). At the beginning of company‘s history, just a single truck type was used but later other types were derived from it, then from the new types another types
were derived, and so on.

Today, ACM is rich enough to pay historians to study its history. One thing historians tried to find out is so called derivation plan -- i.e. how the truck types were derived. They defined the distance of truck types as the number of positions with different
letters in truck type codes. They also assumed that each truck type was derived from exactly one other truck type (except for the first truck type which was not derived from any other type). The quality of a derivation plan was then defined as

1/Σ(to,td)d(to,td)

where the sum goes over all pairs of types in the derivation plan such that to is the original type and td the type derived from it and d(to,td) is the distance of the types.

Since historians failed, you are to write a program to help them. Given the codes of truck types, your program should find the highest possible quality of a derivation plan.

Input

The input consists of several test cases. Each test case begins with a line containing the number of truck types, N, 2 <= N <= 2 000. Each of the following N lines of input contains one truck type code (a string of seven lowercase letters). You may assume that
the codes uniquely describe the trucks, i.e., no two of these N lines are the same. The input is terminated with zero at the place of number of truck types.

Output

For each test case, your program should output the text "The highest possible quality is 1/Q.", where 1/Q is the quality of the best derivation plan.

Sample Input

4
aaaaaaa
baaaaaa
abaaaaa
aabaaaa
0

Sample Output

The highest possible quality is 1/3.

分析: 要使派生方案的优劣值最大,那么分母的值当然是要越小越好,而且要求考虑所有类型对(t0, td)的距离,使得最终派生方案中每种卡车类型都是由其他一种卡车类型派生出来的(除了最初的卡车类型之外)这样,将每种卡车类型理解成一个无向网中的顶点,所要求的最佳派生方案就是求最小生成树,而上述表达式中的分母就是最小生成树的权值;

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#define MAXN 2005
#define INF 0x1f1f1f1f
#define RST(N)memset(N, 0, sizeof(N))
using namespace std;

int n, res, cas, dist;
int lowcost[MAXN], d[MAXN][MAXN];
char code[MAXN][10];

int Min_Tree()
{
    RST(d), res = 0;
    for(int i=0; i<n; i++) {
        for(int j=i+1; j<n; j++) {
            dist = 0;
            for(int k=0; k<7; k++) {
                dist += code[i][k]!=code[j][k];
            }
            d[i][j] = d[j][i] = dist;
        }
    }
    lowcost[0] = -1;
    for(int i=1; i<n; i++) lowcost[i] = d[0][i];
    for(int i=1; i<n; i++) {
        int min = INF, p;
        for(int j=0; j<n; j++) {
            if(lowcost[j] != -1 && lowcost[j] < min) {
                p = j;
                min = lowcost[j];
            }
        }
        res += min;
        lowcost[p] = -1;
        for(int j=0; j<n; j++) {
            if(d[p][j] < lowcost[j]) lowcost[j] = d[p][j];
        }
    }
    return res;
}

void Init()
{
    for(int i=0; i<n; i++) scanf("%s", code[i]);
    printf("The highest possible quality is 1/%d.\n", Min_Tree());
}

int main()
{
    while(~scanf("%d", &n) && n) Init();
}

ZOJ 2158 && POJ 1789 Truck History (经典MST)

时间: 2024-12-25 03:22:19

ZOJ 2158 && POJ 1789 Truck History (经典MST)的相关文章

ZOJ 2158 POJ 1789 Truck History

最小生成树,主要是题目比较难懂. #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; const int Maxn=2000+10; const int maxn=2000*2000+10; int Father[Maxn]; struct Edge { int from,to,w; }edge[maxn]; int n

POJ #1789 Truck History 最小生成树(MST) prim 稠密图 链式向前星

Description 题目:链接 这道题的数据集网上比较少,提供一组自己手写的数据: INPUT: 3 aaaaaaa baaaaaa abaaaaa OUTPUT: The highest possible quality is 1/2. 思路 题意比较不好理解,简而言之就是有 n 个字符串,设两个字符串之间的差异为 dis,dis 由两个字符串对应位置上不同字母的数量决定.比如串A"aaaaaaa" .串B"baaaaaa" 和串C"abaaaaa&

poj 1789 Truck History(kruskal算法)

题目链接:http://poj.org/problem?id=1789 思路:把每一行看成一个一个点,每两行之间不懂得字符个数就看做是权值.然后用kruskal算法计算出最小生成树 我写了两个代码一个是用优先队列写的,但是超时啦,不知道为什么,希望有人可以解答.后面用的数组sort排序然后才AC. code: 数组sort排序AC代码: #include<cstdio> #include<queue> #include<algorithm> #include<io

poj 1789 Truck History 解题报告

题目链接:http://poj.org/problem?id=1789 题目意思:给出 N 行,每行7个字符你,统计所有的 行 与 行 之间的差值(就是相同位置下字母不相同),一个位置不相同就为1,依次累加.问最终的差值最少是多少. 额.....题意我是没看懂啦= =......看懂之后,就转化为最小生成树来做了.这是一个完全图,即每条边与除它之外的所有边都连通.边与边的权值是通过这个差值来算出来的. 1 #include <iostream> 2 #include <cstdio>

Kuskal/Prim POJ 1789 Truck History

题目传送门 1 /* 2 题意:给出n个长度为7的字符串,一个字符串到另一个的距离为不同的字符数,问所有连通的最小代价是多少 3 Kuskal/Prim: 先用并查集做,简单好写,然而效率并不高,稠密图应该用Prim.这是最小生成数的裸题,然而题目有点坑爹:( 4 */ 5 #include <cstdio> 6 #include <cstring> 7 #include <string> 8 #include <algorithm> 9 #include

POJ 1789 -- Truck History(Prim)

 POJ 1789 -- Truck History Prim求分母的最小.即求最小生成树 1 #include<iostream> 2 #include<cstring> 3 #include<algorithm> 4 using namespace std; 5 const int maxn = 2000 + 10; 6 const int INF = 1000000; 7 int n;//有几个卡车 8 char str[maxn][10]; 9 int d[ma

POJ 1789 Truck History (Kruskal 最小生成树)

Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 19860   Accepted: 7673 Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vegetable delivery, other for furniture, or for brick

poj 1789 Truck History (克鲁斯卡尔)

Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 20140   Accepted: 7791 Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vegetable delivery, other for furniture, or for brick

POJ 1789 Truck History(最小生成树)

题意  有n辆卡车  每辆卡车用7个字符表示  输入n  再输入n行字符  第i行与第j行的两个字符串有多少个对应位置的字符不同  i与j之间的距离就是几  求连接所有卡车的最短长度  题目不是这个意思  这样理解就行了 prim啦啦啦啦 #include<cstdio> #include<cstring> using namespace std; const int N = 2005; int cost[N], dis[N][N], n, ans; void prim() { m