union, enum, and struct, 以及结构填充和位字段实现。

Table 4-9 Compiler storage of data objects by byte alignment

Type Bytes Alignment
char, bool, _Bool 1 Located at any byte address.
short, wchar_t 2 Located at any address that is evenly divisible by 2.

float, int, long, pointer
4 Located at an address that is evenly divisible by 4.

long long, double, long double
8 Located at an address that is evenly divisible by 8.

Unions

当使用不同类型的成员访问联合成员时,可以从原始类型的表示中预测结果值。没有错误。

Enumerations

枚举类型的一个对象是最小的整数类型包含枚举的范围内实现。

在C和C++中的模式,模式没有-- enum_is_int,如果枚举包含积极的枚举值,该枚举的存储类型是从下面的列表中的第一个符号类型,根据该枚举器枚举的范围。在其他模式,在这种情况下,一个枚举包含任何负面的枚举值,该枚举的存储类型是下列第一,根据该枚举数的范围在枚举:

  • unsigned char if not using --enum_is_int
  • signed char if not using --enum_is_int
  • unsigned short if not using --enum_is_int
  • signed short if not using --enum_is_int
  • signed int
  • unsigned int except C with --strict
  • signed long long except C with --strict
  • unsigned long long except C with --strict.

在混合使用和不使用-enum_is_int选项编译的转换单元以及共享接口或数据结构时,必须注意。在严格C中,枚举数值必须表示为INT。也就是说,他们必须在范围内-2147483648到2147483647,包括在内。对超出范围的枚举数值发出警告:

#66: enumeration value is out of "int" range

Structures

结构可以包含填充,以确保字段正确对齐,并确保结构本身正确地对齐。下图显示了一个常规的、不打包的结构的示例。填充字节1、2和3以确保正确的字段对齐。填充字节11和12以确保正确的结构对齐。函数返回结构的大小,包括填充。

编译器根据结构的定义方式以下列方式之一对结构进行解析:

  • 定义为静态或外部结构的结构用零填充。
  • 堆栈或堆上的结构,如使用malloc()或AUTO定义的结构,将填充以前存储在这些内存位置中的内容。您不能使用memcmp()来比较以这种方式定义的填充结构。

Bitfields

在非打包结构中,ARM编译器在容器中分配位字段。容器是声明类型的对齐对象。分配Bitfield使指定的第一个字段占用单词中寻址最低的位,具体取决于配置:

小端(Little-endian):最低地址意味着最不重要。大端(Big-endian):最低地址意味着最重要。

在严格的1990 ISO标准C中,唯一允许使用位字段的类型是int、符号int和无符号int。对于非int位字段,编译器将显示一个错误。无符号或无符号限定符声明的普通位字段被视为无符号。例如,intx:10分配一个10位的无符号整数。位字段被分配给具有足够数量未分配位的正确类型的第一个容器,例如:

struct X
{
    int x:10;
    int y:20;
};

第一个声明创建一个整数容器,并将10位分配给x。在第二个声明中,编译器找到具有足够数量未分配位的现有整数容器,并在与x相同的容器中分配y。

位字段完全包含在其容器中。不适合于容器的位字段放置在相同类型的下一个容器中。例如,如果为结构声明了额外的位字段,则z的声明会溢出容器:

struct X
{
    int x:10;
    int y:20;
    int z:5;
};

编译器为第一个容器分配剩余的两位,并为z分配一个新的整数容器。Bitfield容器可以相互重叠,例如:

struct X
{
    int x:10;
    char y:2;
};

第一个声明创建一个整数容器,并将10位分配给x。这10位占用整数容器的第一个字节和第二个字节的两个位。在第二个声明中,编译器检查char类型的容器。没有合适的容器,因此编译器分配一个新的正确对齐的char容器。

由于CHAR的自然对齐是1,编译器会搜索包含足够数量未分配位的第一个字节,以完全包含位字段。在示例结构中,int容器的第二字节具有分配给x的两个比特,以及未分配的六个比特。编译器在前一个int容器的第二个字节开始分配一个字符容器,跳过分配给x的前两个位,并将两个位分配给y。

如果y被声明为char y:8,编译器会将第二个字节存储起来,并将一个新的char容器分配给第三个字节,因为位字段不能溢出它的容器。下图显示了以下示例结构的位字段分配:

struct X
{
    int x:10;
    char y:8;
};

相同的基本规则适用于具有不同容器类型的位字段声明。例如,向示例结构中添加int位字段会提供:

struct X
{
    int x:10;
    char y:8;
    int z:5;
}

The compiler allocates an int container starting at the same location as the int x:10 container and allocates a byte-aligned char and 5-bit bitfield, as follows:

Figure 10-3 Bitfield allocation 2

You can explicitly pad a bitfield container by declaring an unnamed
bitfield of size zero. A bitfield of zero size fills the container up to the end
if the container is not empty. A subsequent bitfield declaration starts a new
empty container.

Note

As an optimization, the compiler might overwrite padding bits in a
container with unspecified values when a bitfield is written. This does not
affect normal usage of bitfields.

Bitfields in packed structures

Packed bitfield containers, including all bitfield containers in
packed structures, have an alignment of 1. Therefore the maximum bit padding
inserted to align a packed bitfield container is 7 bits.

For an unpacked bitfield container, the maximum bit padding is
8*sizeof(container-type)-1 bits.

Tail-padding is always inserted into the structure as necessary to
ensure arrays of the structure will have their elements correctly aligned.

A packed bitfield container is only large enough (in bytes) to hold
the bitfield that declared it. Non-packed bitfield containers are the size of
their type.

The following examples illustrate these interactions.

struct A {          int z:17; }; // sizeof(A) = 4, alignment = 4
struct A { __packed int z:17; }; // sizeof(A) = 3, alignment = 1
__packed struct A { int z:17; }; // sizeof(A) = 3, alignment = 1
struct A { char y:1;          int z:31; }; // sizeof(A) = 4, alignment = 4
struct A { char y:1; __packed int z:31; }; // sizeof(A) = 4, alignment = 1
__packed struct A { char y:1; int z:31; }; // sizeof(A) = 4, alignment = 1
struct A { char y:1;          int z:32; }; // sizeof(A) = 8, alignment = 4
struct A { char y:1; __packed int z:32; }; // sizeof(A) = 5, alignment = 1
__packed struct A { char y:1; int z:32; }; // sizeof(A) = 5, alignment = 1
struct A { int x; char y:1;          int z:31; };  // sizeof(A) = 8, alignment = 4
struct A { int x; char y:1; __packed int z:31; };  // sizeof(A) = 8, alignment = 4
__packed struct A { int x; char y:1; int z:31; };  // sizeof(A) = 8, alignment = 1
struct A { int x; char y:1;          int z:32; };  // sizeof(A) = 12, alignment = 4 [1]
struct A { int x; char y:1; __packed int z:32; };  // sizeof(A) = 12, alignment = 4 [2]
__packed struct A { int x; char y:1; int z:32; };  // sizeof(A) = 9, alignment = 1

Note that [1] and [2] are not identical; the location of z within the structure and the tail-padding differ.

struct example1
{
int a : 8;  /* 4-byte container at offset 0 */
__packed int b : 8;  /* 1-byte container at offset 1 */
__packed int c : 24; /* 3-byte container at offset 2 */
}; /* Total size 8 (3 bytes tail padding) */;
struct example2
{
__packed int a : 8; /* 1-byte container at offset 0 */
__packed int b : 8; /* 1-byte container at offset 1 */
int c : 8; /* 4-byte container at offset 0 */
}; /* Total size 4 (No tail padding) */
struct example3
{
int a : 8;  /* 4-byte container at offset 0 */
__packed int b : 32; /* 4-byte container at offset 1 */
__packed int c : 32; /* 4-byte container at offset 5 */
int d : 16; /* 4-byte container at offset 8 */
int e : 16; /* 4-byte container at offset 12 */
int f : 16; /* In previous container */
}; /* Total size 16 (No tail padding) */

原文地址:https://www.cnblogs.com/qiyuexin/p/8858863.html

时间: 2024-10-10 21:18:41

union, enum, and struct, 以及结构填充和位字段实现。的相关文章

struct ifreq结构体与ip,子网掩码,网关等信息

总结一下,今天学习的关于通过socket,ioctl来获得ip,netmask等信息,其中很多内容参照了很多网上的信息,我会一一列出的 我用的这个函数,就是下面这个函数,其中的有一些全局变量,很好懂,也就不多做解释了一.下面对这个函数进行注解一下: int get_nic_IP_Address()//获取各网卡IP地址.子网掩码{ struct ifreq ifreq;  //声明一个struct ifreq结构体(这个结构体中有很多重要的参数,具体可以参照第二的补充)   int sock; 

struct sk_buff 结构

struct sk_buff可能是linux网络代码中最重要的数据结构,它表示接收或发送数据包的包头信息,并包含很多成员变量供网络代码中的各子系统使用.    这个结构被网络的不同层(MAC或者其他二层链路协议,三层的IP,四层的TCP或UDP等)使用,并且其中的成员变量在结构从一层向另一层传递时改变. L4向L3传递前会添加一个L4的头部,同样,L3向L2传递前,会添加一个L3的头部.添加头部比在不同层之间拷贝数据的效率更高.由于在缓冲区的头部 添加数据意味着要修改指向缓冲区的指针,这是个复杂

Linux struct file 结构

struct file结构体定义在/linux/include/linux/fs.h(Linux 2.6.11内核)中,其原型是:struct file {        /*         * fu_list becomes invalid after file_free is called and queued via         * fu_rcuhead for RCU freeing         */        union {                struct l

Swift学习之enum、struct、class的异同详解

由于在开发过程中常常需要用到系统提供的基础类型之外的的类型,因此Swift开发中我们可以根据自己的需要构建属于自己的类型系统以便于更加灵活和方便的开发程序并将其称之为named types.Swift主要为我们提供了以下四种named types 分别是:enum.struct.class和protocol, 相信熟悉objective-c开发的同学们对于iOS中枚举.结构体和类的概念一点都不陌生.相比于前辈objective-c中的这三者,Swift将enum和struct变得更加灵活且强大,

struct ethhdr结构体详解

    在linux系统中,使用struct ethhdr结构体来表示以太网帧的头部.这个struct ethhdr结构体位于#include<linux/if_ether.h>之中. #define ETH_ALEN 6  //定义了以太网接口的MAC地址的长度为6个字节 #define ETH_HLAN 14  //定义了以太网帧的头长度为14个字节 #define ETH_ZLEN 60  //定义了以太网帧的最小长度为 ETH_ZLEN + ETH_FCS_LEN = 64个字节 #d

struct socket结构体详解

在内核中为什么要有struct socket结构体呢?    struct socket结构体的作用是什么?    下面这个图,我觉得可以回答以上两个问题.      由这个图可知,内核中的进程可以通过使用struct socket结构体来访问linux内核中的网络系统中的传输层.网络层.数据链路层.也可以说struct socket是内核中的进程与内核中的网路系统的桥梁.   struct socket {      socket_state  state; // socket state  

struct termios结构体【转】

本文转载自:http://blog.csdn.net/vevenlcf/article/details/51096122 一.数据成员 termios 函数族提供了一个常规的终端接口,用于控制非同步通信端口. 这个结构包含了至少下列成员:tcflag_t c_iflag;      /* 输入模式 */tcflag_t c_oflag;      /* 输出模式 */tcflag_t c_cflag;      /* 控制模式 */tcflag_t c_lflag;      /* 本地模式 *

struct list_head结构体及相关函数

struct list_head结构体是linux实现数据结构双向链表的基础.其定义: struct list_head { struct list_head *next, *prev; }; 可见链表里面的成员还是链表,每个链表都指向了前面和后面的链表. 一般将struct list_head作为一个成员,放到一个结构体中,其作用是可以从当前的结构体指针,获取到下一个链表元素的地址.一般用list_entry()来实现.具体按照下面的链接: http://www.cnblogs.com/bas

struct sk_buff结构体详解

struct sk_buff是linux网络系统中的核心结构体,linux网络中的所有数据包的封装以及解封装都是在这个结构体的基础上进行. struct sk_buff_head  {     struct sk_buff *next;     struct sk_buff *prev;          __u32 qlen;     spinlock_t lock; } struct sk_buff {     struct sk_buff *next;     struct sk_buff