Kubernetes NetworkPolicy工作原理浅析

Kubernetes能够把集群中不同Node节点上的Pod连接起来,并且默认情况下,每个Pod之间是可以相互访问的。但在某些场景中,不同的Pod不应该互通,这个时候就需要进行访问控制。那么如何实现呢?

简介

??Kubernetes提供了NetworkPolicy的Feature,支持按Namespace和按Pod级别的网络访问控制。它利用label指定namespaces或pod,底层用iptables实现。这篇文章简单介绍Kubernetes NetworkPolicy在Calico上的工作原理。

控制面数据流

??Network Policy是一种kubernetes资源,经过定义、存储、配置等流程使其生效。以下是简要流程:

  • 通过kubectl client创建network policy资源;
  • calico的policy-controller监听network policy资源,获取到后写入calico的etcd数据库;
  • node上calico-felix从etcd数据库中获取policy资源,调用iptables做相应配置。

资源配置模板

??Network Policy支持按Pod和Namespace级别的访问控制,定义该资源可以参考以下模板。

指定pod标签访问

??我们要对namespace为myns,带有"role: backend"标签的所有pod进行访问控制:只允许标签为"role: frontend"的Pod,并且TCP端口为6379的数据流入,其他流量都不允许。

kind: NetworkPolicy
apiVersion: extensions/v1beta1
metadata:
  name: allow-frontend
  namespace: myns
spec:
  podSelector:
    matchLabels:
      role: backend
  ingress:
    - from:
        - podSelector:
            matchLabels:
              role: frontend
      ports:
        - protocol: TCP
          port: 6379

指定namespaces标签访问

??我们要对标签为"role: frontend"的所有Pod进行访问控制:只允许namespace标签为"user: bob"的各Pod,并且TCP端口为443的数据流入,其他流量都不允许。

kind: NetworkPolicy
apiVersion: extensions/v1beta1
metadata:
  name: allow-tcp-443
spec:
  podSelector:
    matchLabels:
      role: frontend
  ingress:
    - ports:
        - protocol: TCP
          port: 443
      from:
        - namespaceSelector:
            matchLabels:
              user: bob 

NetworkPolicy数据结构定义

??看完上边的示例,,想必大家对NetworkPolicy的资源对象有一定的了解。接下来我们具体看下Kubernetes对该接口的定义:

type NetworkPolicy struct {
    TypeMeta
    ObjectMeta
    Spec NetworkPolicySpec
}

type NetworkPolicySpec struct {
    PodSelector unversioned.LabelSelector `json:"podSelector"`
    Ingress []NetworkPolicyIngressRule `json:"ingress,omitempty"`
}

type NetworkPolicyIngressRule struct {
    Ports *[]NetworkPolicyPort `json:"ports,omitempty"`
    From *[]NetworkPolicyPeer `json:"from,omitempty"`
}

type NetworkPolicyPort struct {
    Protocol *api.Protocol `json:"protocol,omitempty"`
    Port *intstr.IntOrString `json:"port,omitempty"`
}

type NetworkPolicyPeer struct {
    PodSelector *unversioned.LabelSelector `json:"podSelector,omitempty"`
    NamespaceSelector *unversioned.LabelSelector `json:"namespaceSelector,omitempty"`
}

??简而言之,该资源指定了“被控制访问Pod”和“准入Pod”两类Pod,这可以从spec的podSelector和ingress-from的Selector进行配置。

??接下来我们就看下Kubernetes+Calico的Network policy实现细节。

测试版本

??以下是测试中使用的组件版本:

  • kubernetes:
  • master: v1.9.0
  • node: v1.9.0
  • calico:
  • v2.5.0
  • calico-policy-controller
    • quay.io/calico/kube-policy-controller:v0.7.0

运行配置

  • calico侧,除基本配置外的新建资源:
  • service-account: calico-policy-controller
  • rbac:
    • ServiceRole: calico-policy-controller
    • ServiceRoleBinding: calico-policy-controller
  • deployment: calico-policy-controller
  • Kubernets侧,新建network policy资源;

运行状态

??在原有正常工作的Kubernetes集群上,我们新加了calico-policy-controller容器,它里面主要运行controller进程:

  • calico-policy-controller:
  • 进程
    / # ps aux
     PID   USER     TIME   COMMAND
      1   root       0:00 /pause
      7   root       0:00 /dist/controller
     13   root       0:12 /dist/controller
  • 端口:
      / # netstat -apn | grep contr
       tcp        0      0 10.138.102.219:45488    10.138.76.26:2379       ESTABLISHED 13/controller
       tcp        0      0 10.138.102.219:44538    101.199.110.26:6443     ESTABLISHED 13/controller

??我们可以看到,启动了controller进程,该进程Established两个端口:6443对应的kubernetes api-server端口;2379对应的calico etcd端口。

Calico-felix对policy的配置

数据包走向

??下图是calico流量处理流程(从这里找到)。每个Node的calico-felix从etcd数据库拿下来policy信息,用iptables做底层实现,最主要的就是:cali-pi-[POLICY]@filter 这个Chain。

Network Policy报文处理过程中使用的标记位:

0x2000000: 是否已经经过了policy规则检测,置1表示已经过

符号解释:

from-XXX: XXX发出的报文;

tw: 简写,to wordkoad endpoint;

to-XXX: 发送到XXX的报文;

po: 简写,policy outbound;

cali-: 前缀,calico的规则链;

pi: 简写,policy inbound;

wl: 简写,workload endpoint;

pro: 简写,profile outbound;

fw: 简写,from workload endpoint;

pri: 简写,profile inbound。

(receive pkt)
[email protected] -> [email protected] -> [email protected]
                   |                                 ^        |
                   |          (-i cali+)             |        |
                   +--- (from workload endpoint) ----+        |
                                                              |
            (dest  may be container‘s floating ip)   [email protected]
                                                              |
                                                     (rotuer decision)
                                                              |
                     +--------------------------------------------+
                     |                                            |
            [email protected]                             [email protected]
         (-i cali+)  |                               (-i cali+)   |    (-o cali+)
         +----------------------------+              +------------+-------------+
         |                            |              |            |             |
 cali-wl-to-host           cali-from-host-endpoint   |  cali-from-host-endpoint |
     @filter                       @filter           |         @filter          |
         |                         < END >           |            |             |
         |                                           |   cali-to-host-endpoint  |
         |                                           |         @filter          |
         |                     will return to nat‘s  |         < END >          |
         |                       cali-POSTROUTING    |                          |
 cali-from-wl-dispatc[email protected]  <---------------------+   [email protected]
                      |         \--------------+                       |
          +-----------------------+            |           +----------------------+
          |                       |            |           |                      |
 cali-fw-cali0ef24b1     cali-fw-cali0ef24b2   |  cali tw-cali03f24b1   cali-tw-cali03f24b2
      @filter                 @filter          |       filter                  @filter
  (-i cali0ef24b1)          (-i cali0ef24b2)   |   (-o cali0ef24b1)        (-o cali0ef24b2)
          |                       |            |           |                      |
          +-----------------------+            |           +----------------------+
                      |                        |                       |
           cali-po-[POLICY]@filter             |            cali-pi-[POLICY]@filter
                      |                        |                       |
          cali-pro-[PROFILE]@filter            |           cali-pri-[PROFILE]@filter
                      |                        |                       |
                   < END >                     +------------> [email protected]
                                               +---------->/           |
                                               |                [email protected]
                                               |                       |
                                               |              [email protected]
                                               |                       |
                                               |       (if dip is local: send to lookup)
                                     +---------+--------+   (else: send to nic‘s qdisc)
                                     |                  |           < END >
                     [email protected]       |
                                     |                  |
                                     +------------------+
                                               ^ (-o cali+)
                                               |
                                       [email protected]
                                               ^
(send pkt)                                     |
(router descition) -> [email protected] -> [email protected]

??下面通过访问“禁止所有流量”策略的Pod,来观察对应的iptables处理:

流量进入前

[[email protected] ~]# iptables -nxvL cali-tw-cali1f79f9e08f2 -t filter
Chain cali-tw-cali1f79f9e08f2 (1 references)
    pkts      bytes target     prot opt in     out     source               destination
       0        0 MARK       all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* cali:fthBuDq5I1oklYOL */ /* Start of policies */ MARK and 0xfdffffff
       0        0 cali-pi-default.web-deny-all  all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* cali:Kp-Liqb4hWavW9dD */ mark match 0x0/0x2000000
       0        0 DROP       all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* cali:Qe6UBTrru3RfK2MB */ /* Drop if no policies passed packet */ mark match 0x0/0x2000000

流量进入后

    [[email protected] ~]# iptables -nxvL cali-tw-cali1f79f9e08f2 -t filter
    Chain cali-tw-cali1f79f9e08f2 (1 references)
    pkts      bytes target     prot opt in     out     source               destination
       3      180 MARK       all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* cali:fthBuDq5I1oklYOL */ /* Start of policies */ MARK and 0xfdffffff
       3      180 cali-pi-default.web-deny-all  all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* cali:Kp-Liqb4hWavW9dD */ mark match 0x0/0x2000000
       3      180 DROP       all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* cali:Qe6UBTrru3RfK2MB */ /* Drop if no policies passed packet */ mark match 0x0/0x2000000

??可以看到,DROP的pkts由0变成了3。即该数据包经过MARK、cali-pi-default.web-deny-all两个target处理,被标记符合“拒绝”条件,流经到DROP被丢弃。

流程分析案例

??以下是一个“禁止所有流量进入”的测试案例,通过它看下整体流程。

模型

  • DENY all traffic to an application

查看app-web的标签

??在default的namespace下创建了一个名称为web的service。它的IP和标签如下:

[[email protected] /home/test]# kubectl get service --all-namespaces | grep web
default       web                       ClusterIP   192.168.82.141    <none>        80/TCP              1d

[[email protected] /home/test/]# kubectl get pod --all-namespaces -o wide --show-labels | grep web
default        web-667bdcb4d8-cpvbb                        1/1       Running            0          1d        10.139.54.158    host30.add.bjdt.qihoo.net   app=web,pod-template-hash=2236876084

配置policy

??首先,通过kubectl查看k8s资源:

[[email protected] /home/test]# kubectl get networkpolicy web-deny-all -o yaml
- apiVersion: extensions/v1beta1
  kind: NetworkPolicy
  metadata:
    name: web-deny-all
    namespace: default
  spec:
    podSelector:
      matchLabels:
        app: web
    policyTypes:
    - Ingress

??接下来,通过calicoctl和etcdctl查看calico资源:

[[email protected] /home/test]# calicoctl get policy default.web-deny-all -o yaml
- apiVersion: v1
  kind: policy
  metadata:
    name: default.web-deny-all
  spec:
    egress:
    - action: allow
      destination: {}
      source: {}
    order: 1000
    selector: calico/k8s_ns == ‘default‘ && app == ‘web‘ 

[[email protected] /home/test]# /home/test/etcdctl-wrapper-v2.sh get /calico/v1/policy/tier/default/policy/default.web-deny-all
{"outbound_rules": [{"action": "allow"}], "order": 1000, "inbound_rules": [], "selector": "calico/k8s_ns == ‘default‘ && app == ‘web‘"}

查看felix进行Network Policy配置的日志

增加 && 删除Policy

2018-02-11 11:13:22.029 [INFO][257] label_inheritance_index.go 203: Updating selector selID=Policy(name=default.api-allow)
2018-02-11 09:39:35.642 [INFO][257] label_inheritance_index.go 209: Deleting selector Policy(name=default.api-allow)

查看node上的iptables规则

[[email protected] ~]# iptables -nxvL cali-tw-cali96bc57f337a
Chain cali-tw-cali96bc57f337a (1 references)
    pkts      bytes target     prot opt in     out     source               destination
       0        0 ACCEPT     all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* cali:oSVcrqJ8U46FxQEJ */ ctstate RELATED,ESTABLISHED
       0        0 DROP       all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* cali:nudTdCphcvic4flm */ ctstate INVALID
       2      120 MARK       all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* cali:QWGVPDFBXrYgBHjv */ MARK and 0xfeffffff
       2      120 MARK       all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* cali:fnpcHeCllWo_kg1u */ /* Start of policies */ MARK and 0xfdffffff
       2      120 cali-pi-default.web-deny-all  all  --  *  *   0.0.0.0/0            0.0.0.0/0            /* cali:ibEcyP2JurQBR2JS */ mark match 0x0/0x2000000
       0        0 RETURN     all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* cali:dIb1kwxUZz8DgRje */ /* Return if policy accepted */ mark match 0x1000000/
0x1000000
       2      120 DROP       all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* cali:1O4PxUpswz0ZqJnr */ /* Drop if no policies passed packet */ mark match 0x
0/0x2000000
       0        0 cali-pri-k8s-pod-network  all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* cali:rb9GDlntQSXL3Sen */
       0        0 RETURN     all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* cali:s2lDMKnLGp_JSpKk */ /* Return if profile accepted */ mark match 0x1000000
/0x1000000
       0        0 DROP       all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* cali:q8OkJmM7E9TcFsQr */ /* Drop if no profiles matched */

从另一pod上访问该服务

[[email protected] /home/test]# kubectl run --rm -i -t --image=alpine test-$RANDOM -- sh
If you don‘t see a command prompt, try pressing enter.
/ # wget -qO- --timeout=3 http://192.168.82.141:80
wget: download timed out
/ #

??可见,访问该service的80端口失败;ping所对应的Pod试试:

[[email protected] /]# ping 10.139.54.158
PING 10.139.54.158 (10.139.54.158) 56(84) bytes of data.

^C
--- 10.139.54.158 ping statistics ---
45 packets transmitted, 0 received, 100% packet loss, time 44000ms

??Ping该Pod也是失败,达到了“禁止所有流量进入”的预期。

总结

??Kubernetes的NetworkPolicy实现了访问控制,解决了部分网络安全的问题。但截至现在,Kubernetes、Calico对其支持尚未完全,部分特性(egress等)仍在进行中;另一方面calico的每个Node上配置大量iptables规则,加上不同维度控制的增加,导致运维、排障难度较大。所以对网络访问控制有需求的用户来讲,能否使用还需综合考虑。

参考资料:

原文地址:https://www.cnblogs.com/wenxinlee/p/8528180.html

时间: 2024-10-05 12:01:15

Kubernetes NetworkPolicy工作原理浅析的相关文章

浅析Kubernetes的工作原理

转至 https://www.cnblogs.com/163yun/p/9518901.html 先放一张Kubernetes的架构图: 整体来看,是一个老大,多个干活的这种结构,基本上所有的分布式系统都是这样,但是里面的组件名称就纷繁复杂,下面将一一解析. 1.元数据存储与集群维护 作为一个集群系统,总要有一个统一的地方维护整个集群以及任务的元数据.而且作为集群系统的控制节点,为了高可用性,往往存在多个Master,在多个Master中间,总要有一个Leader. 在Kubernetes里面,

OpenVAS漏洞扫描插件工作原理浅析

开始阅读此文之前请安装好OSSIM v4.15OpenVAS釆用***测试原理,利用Scanner模块中的脚本引擎对目标进行安全检测.Openvas的Scanner的扫描性能依赖于同时进行扫描的并发进程数,不同的硬件环境上可设置的最有效并发扫描数各不相同,Openvas的扫描引擎设备可在保证系统稳定的前提下达到最佳的扫描性能,对于大型网络使用标准设备进行部署可大大降低安装和维护成本.脚本引擎根据用户提交的配置与要求,首先对脚本进行加载与调度,按照顺序依次调用脚本并解析执行,实现扫描功能. 0.什

SPI协议及其工作原理浅析

转载自:http://bbs.chinaunix.net/thread-1916003-1-1.html一.概述. SPI, Serial Perripheral Interface, 串行外围设备接口, 是 Motorola 公司推出的一种同步串行接口技术. SPI 总线在物理上是通过接在外围设备微控制器(PICmicro) 上面的微处理控制单元 (MCU) 上叫作同步串行端口(Synchronous Serial Port) 的模块(Module)来实现的, 它允许 MCU 以全双工的同步串

JQuery选择器$()的工作原理浅析

每次申明一个jQuery对象的时候,返回的是jQuery.prototype.init对象,很多人就会不明白,init明明是jQuery.fn的方法啊,实际上这里不是方法,而是init的构造函数,因为js的prototype对象可以实现继承,加上js的对象只是引用不会是拷贝,new jQuery,new jQuery.fn和new jQuery.fn.init的子对象是一样的,只是有没有执行到init的不同.泗阳县民用航空局 当我们使用选择器的时候$(selector,content),就会执行

缓冲池工作原理浅析

Ⅰ.缓冲池介绍 innodb存储引擎缓冲池(buffer pool) ,类似于oracle的sga,里面放着数据页 .索引页 .change buffer .自适应哈希 .锁(5.5之前)等内容 综上所示: 每次读写数据都是通过Buffer Pool 当Buffer Pool中没有用户所需要的数据时才去硬盘中获取 通过innodb_buffer_pool_size进行设置总容量,该值设置的越大越好 Ⅱ.缓冲池性能问题 2.1 性能线性扩展 假设服务器72核,ht超线程后,144个逻辑核,跑测试按

【Ceph浅析笔记】Ceph的工作原理

本章主要对Ceph的工作原理进行介绍. 寻址过程 如果Client来了一个请求,不管个请求是读还是写都需要先寻址,才能找到数据应该放哪里或者说需要从哪里去. 之前我们说过Ceph的寻址方式是基于计算的,这样就避免的查表,也避免了使用一个单独的元数据服务器. 概述 对于Client传来的一个File,为了方便处理,我们可以将其分割为若干大小相同的小块Object. 然后可以将这些Object映射到OSD上,如果使用一种固定的映射算法,则一个Object每次都会固定的映射到一组OSD上,那么如果这个

【Spark Core】TaskScheduler源码与任务提交原理浅析2

引言 上一节<TaskScheduler源码与任务提交原理浅析1>介绍了TaskScheduler的创建过程,在这一节中,我将承接<Stage生成和Stage源码浅析>中的submitMissingTasks函数继续介绍task的创建和分发工作. DAGScheduler中的submitMissingTasks函数 如果一个Stage的所有的parent stage都已经计算完成或者存在于cache中,那么他会调用submitMissingTasks来提交该Stage所包含的Tas

Sftp和ftp 区别、工作原理等(服务器被动就是被动模式,PORT模式建立数据传输通道是由服务器端发起的,在PASV模式中,数据传输的通道的建立是由FTP客户端发起的)good

Sftp和ftp over ssh2的区别 最近使用SecureFx,涉及了两个不同的安全文件传输协议: -sftp -ftp over SSH2 这两种协议是不同的.sftp是ssh内含的协议,只要sshd服务器启动了,它就可用,它本身不需要ftp服务器启动.ftp over SSH2则象一个二传手. 1.SFTP的工作模式: 图1显示了SFTP的工作模式,它是作为SSH2的一个子服务工作的. 图 1 SFTP工作模式 2.FTP over SSH2 此协议还是基于ftp协议的.在此协议中SS

Sftp和ftp 差别、工作原理等(汇总ing)

Sftp和ftp over ssh2的差别 近期使用SecureFx,涉及了两个不同的安全文件传输协议: -sftp -ftp over SSH2 这两种协议是不同的.sftp是ssh内含的协议,仅仅要sshdserver启动了,它就可用,它本身不须要ftpserver启动.ftp over SSH2则象一个二传手. 1.SFTP的工作模式: 图1显示了SFTP的工作模式,它是作为SSH2的一个子服务工作的. 图 1 SFTP工作模式 2.FTP over SSH2 此协议还是基于ftp协议的.