算法学习 :分而治之思想

在刷LeetCode时遇到了一题可以用到分治思想的题目,刚好前段时间有看到过关于分治思想的讲解,但是不是很理解,这里再学习一次。

分而治之(divide and conquer,D&C)——一种著名的递归式问题解决方法。

使用分治解决问题的过程包括两个步骤:

1.找出基线条件,这种条件必须尽可能简单

2.不断将问题分解,或者说缩小规模,直到符合基线条件

编写涉及数组的递归函数时,基线条件通常是数组为空或只包含一个元素。

在实际做题时 只能选择相信这个分治思想是正确的,因为我在看到这种DC解法时 ,感觉是这种解法是计算不出正确结果的,然而事实是可以计算出的。

快速排序就是使用这种思想

对于快速排序,在基线条件中,我证明这种算法对空数组或包含一个

元素的数组管用。在归纳条件中,我证明如果快速排序对包含一个元素的数组管用,对包含两
个元素的数组也将管用;如果它对包含两个元素的数组管用,对包含三个元素的数组也将管用,
以此类推。因此,我可以说,快速排序对任何长度的数组都管用。这里不再深入讨论归纳证明,
但它很有趣,并与D&C协同发挥作用。

原文地址:https://www.cnblogs.com/c-supreme/p/8893765.html

时间: 2024-11-15 06:15:23

算法学习 :分而治之思想的相关文章

算法学习——分治算法

这是从网上查到的概念资料,先收来~ 一.基本概念 在计算机科学中,分治法是一种很重要的算法.字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并.这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)…… 任何一个可以用计算机求解的问题所需的计算时间都与其规模有关.问题的规模越小,越容易直接求解,解题所需的计算时间也越少.例如,对于n个

算法学习笔记

对于一个软件人员来说,算法和数据结构是无法逃避的,越是逃避说明越是需要继续学习和巩固.加深.转载一篇github上有关算法的文章,以便于进行继续学习和理解.当然并不是说非得全部掌握所有算法至少达到需要的时候会找,找到了会使,使完了能明白是什么东西才能更好的进行coding.这篇文章是有关C的 下次再弄个Java语言的算法部分.学无止境嘛,不能光看java也要学习学习C 学习方法 把所有经典算法写一遍 看算法有关源码 加入算法学习社区,相互鼓励学习 看经典书籍 刷题 原文地址:https://gi

LCA 算法学习 (最近公共祖先)poj 1330

poj1330 在求解最近公共祖先为问题上,用到的是Tarjan的思想,从根结点开始形成一棵深搜树,处理技巧就是在回溯到结点u的时候,u的子树已经遍历,这时候才把u结点放入合并集合中,这样u结点和所有u的子树中的结点的最近公共祖先就是u了,u和还未遍历的所有u的兄弟结点及子树中的最近公共祖先就是u的父亲结点.这样我们在对树深度遍历的时候就很自然的将树中的结点分成若干的集合,两个集合中的所属不同集合的任意一对顶点的公共祖先都是相同的,也就是说这两个集合的最近公共祖先只有一个.时间复杂度为O(n+q

算法学习笔记 递归之 快速幂、斐波那契矩阵加速

递归的定义 原文地址为:http://blog.csdn.net/thisinnocence 递归和迭代是编程中最为常用的基本技巧,而且递归常常比迭代更为简洁和强大.它的定义就是:直接或间接调用自身.经典问题有:幂运算.阶乘.组合数.斐波那契数列.汉诺塔等.其算法思想: 原问题可分解子问题(必要条件): 原与分解后的子问题相似(递归方程): 分解次数有限(子问题有穷): 最终问题可直接解决(递归边界): 对于递归的应用与优化,直接递归时要预估时空复杂度,以免出现用时过长或者栈溢出.优化递归就是以

数据挖掘算法学习(三)NaiveBayes算法

算法简单介绍 NBC是应用最广的分类算法之中的一个.朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率.同一时候,NBC模型所需预计的參数非常少,对缺失数据不太敏感,算法也比較简单. 算法如果 给定目标值时属性之间互相条件独立. 算法输入 训练数据   T={(x1,y1),(x2,y2),--,(xn,yn)} 待分类数据x0=(x0(1),x0(2),--,x0(n))T 算法输出 待分类数据x0的分类结果y0∈{c1,c2,--,ck} 算法思想 weka执行 以we

数据挖掘算法学习(一)K-Means算法

博主最近实习开始接触数据挖掘,将学习笔记分享给大家.目前用的软件是weka,下篇文章会着重讲解. 算法简介: K-Means算法是输入聚类个数k,以及包含n个数据对象的数据库,输出满足方差最小标准的k个聚类.并使得所获得的聚类满足:同一聚类中的对象相似度较高:而不同聚类对象相似度较小. 算法假设: 均方误差是计算群组分散度的最佳参数. 算法输入: 聚类个数k:包含n个数据对象的数据集. 算法输出: k个聚类 算法思想: (a)绿点表示数据集在二级的欧几里德空间,初始化的中心点u1和u2用红的和蓝

PageRank算法学习与整理

PageRank 算法学习与整理 由于最近在研究图计算框架的相关问题,决定复习整理一下它的测试算法PageRank,不足之处请大家批评指正! 一. PageRank 相关背景 PageRank 的创始人拉里佩奇(Larry Page)和谢尔盖.布林(Sergey Brin),在1998年提出了该算法,并应用在Google搜索引擎的检索结果排序上,该技术也是Google早期的核心技术之一,是Google用来衡量一个网站好坏的标准. 二. Google搜索引擎工作流程 首先看一下Google搜索网页

EM算法学习笔记2:深入理解

文章<EM算法学习笔记1:简介>中介绍了EM算法的主要思路和流程,我们知道EM算法通过迭代的方法,最后得到最大似然问题的一个局部最优解.本文介绍标准EM算法背后的原理. 我们有样本集X,隐变量Z,模型参数θ,注意他们3个都是向量,要求解的log似然函数是lnp(X|θ),而这个log似然函数难以求解,我们假设隐变量Z已知,发现lnp(X,Z|θ) 的最大似然容易求解. 有一天,人们发现引入任意一个关于隐变量的分布q(Z),对于这个log似然函数,存在这样一个分解: lnp(X|θ)=L(q,θ

计算机算法学习(1) - 不相交集合数据结构

不相交集合 故名思意就是一种含有多个不相交集合的数据结构.典型的应用是确定无向图中连通子图的个数.其基本操作包括: Make-Set(x):建立一个新的集合,集合的成员是x: Union(x,y): 将包含x和y的集合合并为一个集合: Find-Set(x): 返回指向包含x的集合的指针: 下面是一个例子,(a)是一个无向图,(b)是使用不相交集合来找连通子图的个数.做法是初始为各个顶点为一个集合,然后遍历各个边,把边的端点的集合进行合并,当处理完所有的边,能连通的顶点就在一个集合里了,这样就生

经典算法宝典——分治思想(四)(1)

分治法(Divide and Conquer)的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的几个相似问题,以便各个击破,分而治之. 说明: 分治策略的应用很广,具体表现形式各异,比如:折半查找.合并排序.快速排序.二叉树遍历(先遍历左子树再遍历右子树).二叉排序树的查找等算法. 一.分治算法框架 1.算法设计思想 分治法求解问题的过程是,将整个问题分解成若干个小问题后分而治之.如果分解得到的子问题相对来说还太大,则可反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出方