uva 11374 最短路+记录路径 dijkstra最短路模板

UVA - 11374

Airport Express

Time Limit:1000MS   Memory Limit:Unknown   64bit IO Format:%lld & %llu

[Submit]  [Go Back]  [Status]

Description


ProblemD: Airport Express

In a small city called Iokh, a train service, Airport-Express, takes residents to the airport more quickly than other transports. There are two types of trains in Airport-Express, theEconomy-Xpress and theCommercial-Xpress.
They travel at different speeds, take different routes and have different costs.

Jason is going to the airport to meet his friend. He wants to take the Commercial-Xpress which is supposed to be faster, but he doesn‘t have enough money. Luckily he has a ticket for the Commercial-Xpress which can take him one station forward. If he used
the ticket wisely, he might end up saving a lot of time. However, choosing the best time to use the ticket is not easy for him.

Jason now seeks your help. The routes of the two types of trains are given. Please write a program to find the best route to the destination. The program should also tell when the ticket should be used.

Input

The input consists of several test cases. Consecutive cases are separated by a blank line.

The first line of each case contains 3 integers, namely N,S andE (2 ≤N ≤ 500, 1 ≤S,E ≤N),
which represent the number of stations, the starting point and where the airport is located respectively.

There is an integer M (1 ≤ M ≤ 1000) representing the number of connections between the stations of the Economy-Xpress. The nextM lines give the information of the routes of the
Economy-Xpress. Each consists of three integersXY and Z (X,Y ≤N, 1 ≤Z ≤
100). This meansX andY are connected and it takesZ minutes to travel between these two stations.

The next line is another integer K (1 ≤ K ≤ 1000) representing the number of connections between the stations of the Commercial-Xpress. The nextK lines contain the information
of the Commercial-Xpress in the same format as that of the Economy-Xpress.

All connections are bi-directional. You may assume that there is exactly one optimal route to the airport. There might be cases where you MUST use your ticket in order to reach the airport.

Output

For each case, you should first list the number of stations which Jason would visit in order. On the next line, output "TicketNot Used" if you decided NOT to use the ticket; otherwise, state the station where Jason should get on the train
of Commercial-Xpress. Finally, print thetotal time for the journey on the last line. Consecutive sets of output must be separated by a blank line.

Sample Input

4 1 4
4
1 2 2
1 3 3
2 4 4
3 4 5
1
2 4 3

Sample Output

1 2 4
2
5

Problemsetter: Raymond Chun

Originally appeared in CXPC, Feb. 2004

http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=22966

因为只能做一次商业线,我们可以枚举商业线T(a,b),则总时间为f(a)+T(a,b)+g(b);f和g用两次dijkstra来计算,以S为起点的dijkstra和以E为起点的dijkstra;

#include <iostream>

#include <cstdio>

#include <vector>

#include <cstring>

#include <algorithm>

#include <queue>

using namespace std;

const int MAXN = 505;

const int INF = 0x3f3f3f3f;

struct Edge {

int from, to, dist;

};

struct HeapNode {

int d, u;

bool operator< (const HeapNode rhs) const {

return d > rhs.d;

}

};

struct Dijkstra {

int n, m;    // 点数和边数

vector<Edge> edges;   //边列表

vector<int> G[MAXN];  // 每个点出发的边编号(0开始)

bool done[MAXN];   // 是否已标记

int d[MAXN];      //s 到各个点的距离

int p[MAXN]; //最短路中上一个点,也可以是上一条边

void init(int n) {

this->n = n;

for (int i = 0; i < n; i++)

G[i].clear();

edges.clear();

}

void AddEdge(int from, int to, int dist) {

edges.push_back((Edge){from, to, dist});

m = edges.size();

G[from].push_back(m-1);

}

void dijkstra(int s) {

priority_queue<HeapNode> Q;

for (int i = 0; i < n; i++)

d[i] = INF;

d[s] = 0;

memset(done, 0, sizeof(done));

Q.push((HeapNode){0, s});

while (!Q.empty()) {

HeapNode x = Q.top();

Q.pop();

int u = x.u;

if (done[u])

continue;

done[u] = true;

for (int i = 0; i < G[u].size(); i++) {

Edge &e = edges[G[u][i]];

if (d[e.to] > d[u] + e.dist) {

d[e.to] = d[u] + e.dist;

p[e.to] = e.from;

Q.push((HeapNode){d[e.to], e.to});

}

}

}

}

void getPath(vector<int> &path, int s, int e) {

int cur = e;

while (1) {

path.push_back(cur);

if (cur == s)

return ;

cur = p[cur];

}

}

};

int n, m, k, s, e;

int x, y, z;

vector<int> path;

int main() {

int first = 1;

while (scanf("%d%d%d", &n, &s, &e) != EOF) {

if (first)

first = 0;

else printf("\n");

s--, e--;

Dijkstra ans[2];

ans[0].init(n);

ans[1].init(n);

scanf("%d", &m);

while (m--) {

scanf("%d%d%d", &x, &y, &z);

x--, y--;

ans[0].AddEdge(x, y, z);

ans[0].AddEdge(y, x, z);

ans[1].AddEdge(x, y, z);

ans[1].AddEdge(y, x, z);

}

ans[0].dijkstra(s);

ans[1].dijkstra(e);

scanf("%d", &k);

path.clear();

int Min = ans[0].d[e];

int flagx = -1, flagy = -1;

while (k--) {

scanf("%d%d%d", &x, &y, &z);

x--, y--;

if (Min > ans[0].d[x] + z + ans[1].d[y]) {

Min = ans[0].d[x] + z + ans[1].d[y];

flagx = x, flagy = y;

}

if (Min > ans[1].d[x] + z + ans[0].d[y]) {

Min = ans[1].d[x] + z + ans[0].d[y];

flagx = y, flagy = x;

}

}

if (flagx == -1) //判断是否需要坐商业线

{

ans[0].getPath(path, s, e);

reverse(path.begin(), path.end());

for (int i = 0; i < path.size()-1; i++)

printf("%d ", path[i]+1);

printf("%d\n", path[path.size()-1]+1);

printf("Ticket Not Used\n");

printf("%d\n", Min);

}

else {

ans[0].getPath(path, s, flagx);

reverse(path.begin(), path.end());

ans[1].getPath(path, e, flagy);

for (int i = 0; i < path.size()-1; i++)

printf("%d ", path[i]+1);

printf("%d\n", path[path.size()-1]+1);

printf("%d\n", flagx+1);

printf("%d\n", Min);

}

}

return 0;

}

uva 11374 最短路+记录路径 dijkstra最短路模板

时间: 2024-10-16 11:47:20

uva 11374 最短路+记录路径 dijkstra最短路模板的相关文章

HDOJ 5294 Tricks Device 最短路(记录路径)+最小割

最短路记录路径,同时求出最短的路径上最少要有多少条边, 然后用在最短路上的边重新构图后求最小割. Tricks Device Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 1584    Accepted Submission(s): 388 Problem Description Innocent Wu follows Dumb Z

UVA 624(01背包记录路径)

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=565 记录路径可以用一个二维数组,记录改变时的量.然后从后往前可以推得所有的值. #include <iostream> #include <string> #include <cstring> #include <cstdlib> #incl

最短路 + 记录路径 之 zoj 1456 Minimum Transport Cost (hdu 1385)

/* 考虑到测试数据中需要求解任意两点间的最短路,所以采用Floyd-Warshall算法 dp[i][j] = min(dp[i][k] + dp[k][j] + tax[k], dp[i][j]); 关键在于记录路径,并且要保证:if there are more minimal paths, output the lexically smallest one. 分两种情况讨论: (1)dp[i][j] > dp[i][k] + dp[k][j] + tax[k] 直接更新dp[i][j],

hdu 4871 树的分治+最短路记录路径

/* 题意:给你一些节点和一些边,求最短路径树上是k个节点的最长的路径数. 解:1.求出最短路径树--spfa加记录 2.树上进行操作--树的分治,分别处理子树进行补集等运算 */ #include<stdio.h> #include<string.h> #include<stdlib.h> #include<algorithm> #include<iostream> #include<queue> #define ll __int6

UVA 11374 Halum (差分约束系统,最短路)

题意:给定一个带权有向图,每次你可以选择一个结点v 和整数d ,把所有以v为终点的边权值减少d,把所有以v为起点的边权值增加d,最后要让所有的边权值为正,且尽量大.若无解,输出结果.若可无限大,输出结果.否则,输出最小边权的最大值. 思路:差分约束系统用最短路来解.列式子后建图,新图的边就是原图的边,权值也不变.有3种情况,要分开判断. (1)若连最小的权值1都达不到,肯定无解. (2)若可以超过所给边的最大权值,那么最小权值肯定可以继续增大. (3)接下来用二分猜答案,答案范围在[1,big]

HDU 2544 - 最短路 - [堆优化dijkstra][最短路模板题]

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可

训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)

layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalog: true mathjax: true tags: - 最短路 - Dijkstra - 图论 - 训练指南 Airport Express UVA - 11374 题意 机场快线有经济线和商业线,现在分别给出经济线和商业线的的路线,现在只能坐一站商业线,其他坐经济线,问从起点到终点的最短用时是多少,还有

UVA 11374 Airport Express 机场快线(单源最短路,dijkstra,变形)

题意:给一幅图,要从s点要到e点,图中有两种无向边分别在两个集合中,第一个集合是可以无限次使用的,第二个集合中的边只能挑1条.问如何使距离最短?输出路径,用了第二个集合中的哪条边,最短距离. 思路: (1)简单易操作方法:既然第二个集合的边只能有1条,就穷举下这些边,可能的边集进行求最短路,同时记录3个答案.复杂度是O(m*k). (2)时间复杂度低:不妨先求从s到每个其他点的距离d1[i],再求e到其他每个点的距离d2[i],接下来穷举第二个集合中的每条边u-v,那么最短距离为d1[u]+di

UVA 11374 Airport Express 机场快线 Dijistra+路径

题目链接:UVA 11374 Airport Express Airport Express Time Limit: 1000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu [Submit]   [Go Back]   [Status] Description Problem D: Airport Express In a small city called Iokh, a train service, Airport-Expr