洛谷-神奇的幻方-NOIP2015提高组复赛

题目描述

幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行、每列及两条对角线上的数字之和都相同。

当N为奇数时,我们可以通过以下方法构建一个幻方:

首先将1写在第一行的中间。

之后,按如下方式从小到大依次填写每个数K(K=2,3,…,N*N):

1.若(K−1)在第一行但不在最后一列,则将K填在最后一行,(K−1)所在列的右一列;

2.若(K−1)在最后一列但不在第一行,则将K填在第一列,(K−1)所在行的上一行;

3.若(K−1)在第一行最后一列,则将K填在(K−1)的正下方;

4.若(K−1)既不在第一行,也不在最后一列,如果(K−1)的右上方还未填数,则将K填在(K−1)的右上方,否则将K填在(K−1)的正下方。

现给定N请按上述方法构造N*N的幻方。

输入输出格式

输入格式:

输入文件只有一行,包含一个整数N即幻方的大小。

输出格式:

输出文件包含N行,每行N个整数,即按上述方法构造出的N*N的幻方。相邻两个整数之间用单个空格隔开。

输入输出样例

输入样例#1:

3

输出样例#1:

8 1 6
3 5 7
4 9 2

输入样例#2:

25

输出样例#2:

327 354 381 408 435 462 489 516 543 570 597 624 1 28 55 82 109 136 163 190 217 244 271 298 325
353 380 407 434 461 488 515 542 569 596 623 25 27 54 81 108 135 162 189 216 243 270 297 324 326
379 406 433 460 487 514 541 568 595 622 24 26 53 80 107 134 161 188 215 242 269 296 323 350 352
405 432 459 486 513 540 567 594 621 23 50 52 79 106 133 160 187 214 241 268 295 322 349 351 378
431 458 485 512 539 566 593 620 22 49 51 78 105 132 159 186 213 240 267 294 321 348 375 377 404
457 484 511 538 565 592 619 21 48 75 77 104 131 158 185 212 239 266 293 320 347 374 376 403 430
483 510 537 564 591 618 20 47 74 76 103 130 157 184 211 238 265 292 319 346 373 400 402 429 456
509 536 563 590 617 19 46 73 100 102 129 156 183 210 237 264 291 318 345 372 399 401 428 455 482
535 562 589 616 18 45 72 99 101 128 155 182 209 236 263 290 317 344 371 398 425 427 454 481 508
561 588 615 17 44 71 98 125 127 154 181 208 235 262 289 316 343 370 397 424 426 453 480 507 534
587 614 16 43 70 97 124 126 153 180 207 234 261 288 315 342 369 396 423 450 452 479 506 533 560
613 15 42 69 96 123 150 152 179 206 233 260 287 314 341 368 395 422 449 451 478 505 532 559 586
14 41 68 95 122 149 151 178 205 232 259 286 313 340 367 394 421 448 475 477 504 531 558 585 612
40 67 94 121 148 175 177 204 231 258 285 312 339 366 393 420 447 474 476 503 530 557 584 611 13
66 93 120 147 174 176 203 230 257 284 311 338 365 392 419 446 473 500 502 529 556 583 610 12 39
92 119 146 173 200 202 229 256 283 310 337 364 391 418 445 472 499 501 528 555 582 609 11 38 65
118 145 172 199 201 228 255 282 309 336 363 390 417 444 471 498 525 527 554 581 608 10 37 64 91
144 171 198 225 227 254 281 308 335 362 389 416 443 470 497 524 526 553 580 607 9 36 63 90 117
170 197 224 226 253 280 307 334 361 388 415 442 469 496 523 550 552 579 606 8 35 62 89 116 143
196 223 250 252 279 306 333 360 387 414 441 468 495 522 549 551 578 605 7 34 61 88 115 142 169
222 249 251 278 305 332 359 386 413 440 467 494 521 548 575 577 604 6 33 60 87 114 141 168 195
248 275 277 304 331 358 385 412 439 466 493 520 547 574 576 603 5 32 59 86 113 140 167 194 221
274 276 303 330 357 384 411 438 465 492 519 546 573 600 602 4 31 58 85 112 139 166 193 220 247
300 302 329 356 383 410 437 464 491 518 545 572 599 601 3 30 57 84 111 138 165 192 219 246 273
301 328 355 382 409 436 463 490 517 544 571 598 625 2 29 56 83 110 137 164 191 218 245 272 299

说明

对于100%的数据,1<=N<=39且N为奇数。

NOIp2015 提高组 d1t1

思路:这题算是水题了,根据题目中的条件来写,几个if直接搬上去即可

代码如下:

 1 #include <stdio.h>
 2 int main()
 3 {
 4     int n,i,j;
 5     int x,y;//记录k-1这个点的坐标,x行,y列
 6     int a[40][40]={0};
 7     scanf("%d",&n);
 8     a[0][n/2]=1;
 9     x=0;
10     y=n/2;
11     for(i=2;i<=n*n;i++)
12     {
13         if(x==0&&y!=(n-1))//若(K-1)在第一行但不在最后一列,则将K填在最后一行,(K-1)所在列的右一列;
14         {
15             a[n-1][y+1]=i;
16             x=n-1;
17             y++;
18         }
19         else if(x!=0&&y==(n-1))//若(K-1)在最后一列但不在第一行,则将K填在第一列,(K-1)所在行的上一行;
20         {
21             a[x-1][0]=i;
22             y=0;
23             x--;
24         }
25         else if(x==0&&y==(n-1))//若(K-1)在第一行最后一列,则将K填在(K-1)的正下方;
26         {
27             a[x+1][y]=i;
28             x++;
29         }
30         else if(x!=0&&y!=(n-1))//若(K-1)既不在第一行,也不在最后一列,如果(K-1)的右上方还未填数,则将K填在(K-1)的右上方,否则将K填在(K-1)的正下方
31         {
32             if(a[x-1][y+1]==0)
33             {
34                 a[x-1][y+1]=i;
35                 x--;
36                 y++;
37             }
38             else
39             {
40                 a[x+1][y]=i;
41                 x++;
42             }
43         }
44     }
45     /*==========================*/
46     for(i=0;i<n;i++)
47     {
48         for(j=0;j<n;j++)
49         {
50             printf("%d ",a[i][j]);
51         }
52         printf("\n");
53     }
54     /*==========================*///输出矩阵
55     return 0;
56 }
时间: 2024-10-13 07:07:53

洛谷-神奇的幻方-NOIP2015提高组复赛的相关文章

洛谷 P2540 斗地主(NOIp2015提高组D1T3)

题目描述 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来进行的扑克牌游戏.在斗地主中,牌的大小关系根据牌的数码表示如下:3<4<5<6<7<8<9<10<J<Q<K<A<2<小王<大王,而花色并不对牌的大小产生影响.每一局游戏中,一副手牌由n张牌组成.游戏者每次可以根据规定的牌型进行出牌,首先打光自己的手牌一方取得游戏的胜利. 现在,牛牛只想知道,对于自己的若干

洛谷-火柴棒等式-NOIP2008提高组复赛

题目描述 Description 给你n根火柴棍,你可以拼出多少个形如“A+B=C”的等式?等式中的A.B.C是用火柴棍拼出的整数(若该数非零,则最高位不能是0).用火柴棍拼数字0-9的拼法如图所示: 注意: 1. 加号与等号各自需要两根火柴棍 2. 如果A≠B,则A+B=C与B+A=C视为不同的等式(A.B.C>=0) 3. n根火柴棍必须全部用上 输入输出格式 Input/output 输入格式: 输入文件matches.in共一行,又一个整数n(n<=24). 输出格式: 输出文件mat

洛谷-生活大爆炸版石头剪刀布-NOIP2014提高组复赛

题目描述 Description 石头剪刀布是常见的猜拳游戏:石头胜剪刀,剪刀胜布,布胜石头.如果两个人出拳一样,则不分胜负.在<生活大爆炸>第二季第8 集中出现了一种石头剪刀布的升级版游戏. 升级版游戏在传统的石头剪刀布游戏的基础上,增加了两个新手势: 斯波克:<星际迷航>主角之一. 蜥蜴人:<星际迷航>中的反面角色. 这五种手势的胜负关系如表一所示,表中列出的是甲对乙的游戏结果. 现在,小A 和小B 尝试玩这种升级版的猜拳游戏.已知他们的出拳都是有周期性规律的,但周

洛谷P1063 能量项链 [2006NOIP提高组]

P1063 能量项链 题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标 记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记.因为只有这样,通过吸盘(吸盘是 Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量.如果前一颗能量珠的头标记为m,尾标记为r,后 一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为m*r*n(Mar

扩展欧几里得模板(洛谷1082 同余方程NOIP 2012 提高组 第二天 第一题)

题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正整数 x0,即最小正整数解.输入数据保证一定有解. 输入输出样例 输入样例#1: 3 10 输出样例#1: 7 说明 [数据范围] 对于 40%的数据,2 ≤b≤ 1,000: 对于 60%的数据,2 ≤b≤ 50,000,000: 对于 100%的数据,2 ≤a, b≤ 2,000,000,000

洛谷P1966 火柴排队[NOIP提高组2013]

我确信我应该是做过这道题……就当再写一遍好了. 贪心思想,一番证明得出a和b数组中最小对最小,次小对次小……时解最优.那么先处理出a,b之间的对应关系,然后按照该关系求a或者b的逆序对数量就是答案 1 /*by SilverN*/ 2 #include<iostream> 3 #include<algorithm> 4 #include<cstring> 5 #include<cstdio> 6 #include<cmath> 7 using n

洛谷 P1970 花匠(NOIp2013提高组D2T2)

题目描述 花匠栋栋种了一排花,每株花都有自己的高度.花儿越长越大,也越来越挤.栋栋决定 把这排中的一部分花移走,将剩下的留在原地,使得剩下的花能有空间长大,同时,栋栋希 望剩下的花排列得比较别致. 具体而言,栋栋的花的高度可以看成一列整数h1,h2..hn.设当一部分花被移走后,剩下的花的高度依次为g1,g2..gn,则栋栋希望下面两个条件中至少有一个满足: 条件 A:对于所有g(2i)>g(2i-1),g(2i)>g(2i+1) 条件 B:对于所有g(2i)<g(2i-1),g(2i)

洛谷 P2827 蚯蚓(NOIp2016提高组D2T2)

题目描述 本题中,我们将用符号?c?表示对c向下取整,例如:?3.0?=?3.1?=?3.9?=3. 蛐蛐国最近蚯蚓成灾了!隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭蚯蚓. 蛐蛐国里现在共有n只蚯蚓(n为正整数).每只蚯蚓拥有长度,我们设第i只蚯蚓的长度为a_i(i=1,2,...,n)a?i??(i=1,2,...,n),并保证所有的长度都是非负整数(即:可能存在长度为0的蚯蚓). 每一秒,神刀手会在所有的蚯蚓中,准确地找到最长的那一只(如有多个则任选一个)将其切成两

洛谷P1541 乌龟棋 [2010NOIP提高组]

P1541 乌龟棋 题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起点出发走到终点. 乌龟棋中M张爬行卡片,分成4种不同的类型(M张卡片中不一定包含所有4种类型的卡片,见样例),每种类型的卡片上分别标有1.2.3.4四个数字 之一,表示使用这种卡片后,乌龟棋子将向前爬行相应的格子数.游戏中,玩家每次需要从所有的爬行卡片中选择一张之前没有使用过的爬