扩展lucas定理

i64 POW(i64 a,i64 b,i64 mod)
{
    i64 ans=1;
    while(b)
    {
        if(b&1) ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}

i64 POW(i64 a,i64 b)
{
    i64 ans=1;
    while(b)
    {
        if(b&1) ans=ans*a;
        a=a*a;
        b>>=1;
    }
    return ans;
}

i64 exGcd(i64 a,i64 b,i64 &x,i64 &y)
{
    i64 t,d;
    if(!b)
    {
        x=1;
        y=0;
        return a;
    }
    d=exGcd(b,a%b,x,y);
    t=x;
    x=y;
    y=t-a/b*y;
    return d;
}

bool modular(i64 a[],i64 m[],i64 k)
{
    i64 d,t,c,x,y,i;

    for(i=2;i<=k;i++)
    {
        d=exGcd(m[1],m[i],x,y);
        c=a[i]-a[1];
        if(c%d) return false;
        t=m[i]/d;
        x=(c/d*x%t+t)%t;
        a[1]=m[1]*x+a[1];
        m[1]=m[1]*m[i]/d;
    }
    return true;
}

i64 reverse(i64 a,i64 b)
{
    i64 x,y;
    exGcd(a,b,x,y);
    return (x%b+b)%b;
}

i64 C(i64 n,i64 m,i64 mod)
{
    if(m>n) return 0;
    i64 ans=1,i,a,b;
    for(i=1;i<=m;i++)
    {
        a=(n+1-i)%mod;
        b=reverse(i%mod,mod);
        ans=ans*a%mod*b%mod;
    }
    return ans;
}

i64 C1(i64 n,i64 m,i64 mod)
{
    if(m==0) return 1;
    return C(n%mod,m%mod,mod)*C1(n/mod,m/mod,mod)%mod;
}

i64 cal(i64 n,i64 p,i64 t)
{
    if(!n) return 1;
    i64 x=POW(p,t),i,y=n/x,temp=1;
    for(i=1;i<=x;i++) if(i%p) temp=temp*i%x;
    i64 ans=POW(temp,y,x);
    for(i=y*x+1;i<=n;i++) if(i%p) ans=ans*i%x;
    return ans*cal(n/p,p,t)%x;
}

i64 C2(i64 n,i64 m,i64 p,i64 t)
{
    i64 x=POW(p,t);
    i64 a,b,c,ap=0,bp=0,cp=0,temp;
    for(temp=n;temp;temp/=p) ap+=temp/p;
    for(temp=m;temp;temp/=p) bp+=temp/p;
    for(temp=n-m;temp;temp/=p) cp+=temp/p;
    ap=ap-bp-cp;
    i64 ans=POW(p,ap,x);
    a=cal(n,p,t);
    b=cal(m,p,t);
    c=cal(n-m,p,t);
    ans=ans*a%x*reverse(b,x)%x*reverse(c,x)%x;
    return ans;
}

//计算C(n,m)%mod
i64 Lucas(i64 n,i64 m,i64 mod)
{
    i64 i,t,cnt=0;
    i64 A[205],M[205];
    for(i=2;i*i<=mod;i++) if(mod%i==0)
    {
        t=0;
        while(mod%i==0)
        {
            t++;
            mod/=i;
        }
        M[++cnt]=POW(i,t);
        if(t==1) A[cnt]=C1(n,m,i);
        else A[cnt]=C2(n,m,i,t);
    }
    if(mod>1)
    {
        M[++cnt]=mod;
        A[cnt]=C1(n,m,mod);
    }
    modular(A,M,cnt);
    return A[1];
}
时间: 2024-08-04 21:15:37

扩展lucas定理的相关文章

【Lucas定理/费马小定理/中国剩余定理/扩展欧几里得】[BZOJ 1951] 古代猪文

[Description] 求 [Solution] 容易得到, 所以,重点在怎么求 如果是p-1是个质数,我们可以用sqrt(n)的时间枚举所有d,用Lucas定理分别计算求和即可. 但是我们发现p-1=2*3*4679*35617,并不是一个质数,所以Lucas定理不能用了吗?并不,我们可以算出这个合式分别对2.3.4679.35617的模值,写出四个同余方程,再用孙子定理求解即可.注意特判g==p的情况,此时费马小定理不成立,ans=0. [Code] #include<cmath> #

HDU3037 Saving Beans(Lucas定理+乘法逆元)

题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个数是个经典问题,可以+1转化正整数解的个数用插板法解决:$C_{y+n-1}^{n-1}=C_{y+n-1}^y$. 而0<=y<=m,最后的结果就是—— $$\sum_{i=0}^m C_{i+n-1}^i$$ $$C_{n-1}^0+C_{n}^1+C_{n+1}^2+\dots+C_{n-1

hdu 5446(2015长春网络赛J题 Lucas定理+中国剩余定理)

题意:M=p1*p2*...pk:求C(n,m)%M,pi小于10^5,n,m,M都是小于10^18. pi为质数 M不一定是质数 所以只能用Lucas定理求k次 C(n,m)%Pi最后会得到一个同余方程组x≡B[0](mod p[0])x≡B[1](mod p[1])x≡B[2](mod p[2])......解这个同余方程组 用中国剩余定理 Sample Input19 5 23 5 Sample Output6 1 # include <iostream> 2 # include <

BZOJ2142 礼物 【扩展Lucas】

题目 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼物,打算送给m个人 ,其中送给第i个人礼物数量为wi.请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某 个人在这两种方案中收到的礼物不同).由于方案数可能会很大,你只需要输出模P后的结果. 输入格式 输入的第一行包含一个正整数P,表示模: 第二行包含两个整整数n和m,分别表示小E从商

【模板】扩展Lucas随想

扩展Lucas解决的还是一个很Simple的问题: 求:$C_{n}^{m} \; mod \; p$. 其中$n,m$都会比较大,而$p$不是很大,而且不一定是质数. 扩展Lucas可以说和Lucas本身并没有什么关系,重要的是中国剩余定理.扩展Lucas这个算法中教会我们的除了算组合数,还有在模数不是质数的时候,往往可以用$CRT$来合并答案. 将原模数质因数分解:$P = \prod_{i = 1}^{m} p_{i}^{k_{i}}$. 列出$m$个同余方程,第$i$个形如:$C_{n}

[bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT

Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了.因此也很少有其他动物知道这样一个王国. 猪王国虽然不大,但是土地肥沃,屋舍俨然.如果一定要拿什么与之相比的话,那就只能是东晋陶渊明笔下的大家想象中的桃

Lucas定理--组合数取模

Lucas定理是用来求 c(n,m) mod p,p为素数的值. C(n,m)%p = C(n/p,m/p) * C(n%p,m%p)%p \(Lucas(n,m,p)=C(n \% p,m \% p) \times Lucas(\frac{n}{p},\frac{m}{p},p)\) \(\binom{n}{m}=\frac{n!}{m!(n-m)!}\) 卢卡斯定理模板 #include <cstdio> #include <iostream> #define ll long

BZOJ 4403 2982 Lucas定理模板

思路: Lucas定理的模板题.. 4403 //By SiriusRen #include <cstdio> using namespace std; const int mod=1000003; #define int long long int cases,N,L,R,fac[mod],inv[mod]; int C(int n,int m){ if(n<m)return 0; if(n<mod&&m<mod)return fac[n]*inv[n-m]

HDU 3037 Saving Beans (数论,Lucas定理)

题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后就求这个值,直接求肯定不好求,所以我们可以运用Lucas定理,来分解这个组合数,也就是Lucas(n,m,p)=C(n%p,m%p)* Lucas(n/p,m/p,p). 然后再根据费马小定理就能做了. 代码如下: 第一种: #pragma comment(linker, "/STACK:10240