最小生成数之Kruskal算法

描述

随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用了——但是幸运的是,经过计算机的分析,小Hi已经筛选出了一些比较适合建造道路的路线,这个数量并没有特别的大。

所以问题变成了——小Hi现在手上拥有N座城市,且已知其中一些城市间建造道路的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A、B、C三座城市,只需要在AB之间和BC之间建造道路,那么AC之间也是可以通过这两条道路连通的)。

输入

每个测试点(输入文件)有且仅有一组测试数据。

在一组测试数据中:

第1行为2个整数N、M,表示小Hi拥有的城市数量和小Hi筛选出路线的条数。

接下来的M行,每行描述一条路线,其中第i行为3个整数N1_i, N2_i, V_i,分别表示这条路线的两个端点和在这条路线上建造道路的费用。

对于100%的数据,满足N<=10^5, M<=10^6,于任意i满足1<=N1_i, N2_i<=N, N1_i≠N2_i, 1<=V_i<=10^3.

对于100%的数据,满足一定存在一种方案,使得任意两座城市都可以互相到达。

输出

对于每组测试数据,输出1个整数Ans,表示为了使任意两座城市都可以通过所建造的道路互相到达至少需要的建造费用。

Sample Input

5 29
1 2 674
2 3 249
3 4 672
4 5 933
1 2 788
3 4 147
2 4 504
3 4 38
1 3 65
3 5 6
1 5 865
1 3 590
1 4 682
2 4 227
2 4 636
1 4 312
1 3 143
2 5 158
2 3 516
3 5 102
1 5 605
1 4 99
4 5 224
2 4 198
3 5 894
1 5 845
3 4 7
2 4 14
1 4 185

Sample Output

92题意描述:输入城市的个数以及道路的条数计算并输出将这些城市连通的最短距离解题思路:典型的最小生成树问题,根据数据的格式,使用Kruskal算法即可。Kruskal算法的主要思路是将所有的边都用结构体数组存起来,对其进行从小到大排序,再遍历每一条边,每次选出最短的那一条边,另外,如果选择的最短边加入到生成树中后会构成回路的话,则需要弃用该条边,选择次短边,重复选边,直到选择了n-1条边。判断加入这条边是否会构成回路,使用了并查集的算法。代码实现:
 1 #include<stdio.h>
 2 #include<string.h>
 3 struct edge
 4 {
 5     int u,v,w;
 6 };
 7 struct edge e[1000010];
 8 #include<algorithm>
 9 using namespace std;
10 bool cmp(struct edge x,struct edge y)
11 {
12     return x.w<y.w;
13 }
14 int f[100010];
15 int merge(int v,int u);
16 int getf(int v);
17 int main()
18 {
19     int n,m,i,sum,c;
20     while(scanf("%d%d",&n,&m) != EOF)
21     {
22         for(i=1;i<=m;i++)
23             scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
24         sort(e+1,e+m+1,cmp);
25         for(i=1;i<=n;i++)
26             f[i]=i;
27         sum=0;
28         c=0;
29         for(i=1;i<=m;i++)
30         {
31             if( merge(e[i].u,e[i].v) )//判断是否能够构成回路
32             {
33                 c++;
34                 sum += e[i].w;
35             }
36             if(c==n-1)
37                 break;
38         }
39         printf("%d\n",sum);
40     }
41     return 0;
42  }
43 int getf(int v)
44 {
45     if(f[v]==v)//键盘功力
46     return v;
47     else
48     {
49         f[v]=getf(f[v]);
50         return f[v];
51     }
52 }
53 int merge(int v,int u)
54 {
55     int t1,t2;
56     t1=getf(v);
57     t2=getf(u);
58     if(t1 != t2)
59     {
60         f[t2]=t1;//收录
61         return 1;//不构成回路,返回1表示可以建造这条路
62     }
63     return 0;//返回0表示已经构成了回路,不能建造这条路
64 }
时间: 2024-10-25 10:38:35

最小生成数之Kruskal算法的相关文章

图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 B(G).其中 T(G)是遍历图时所经过的边的集合,B(G) 是遍历图时未经过的边的集合.显然,G1(V, T) 是图 G 的极小连通子图,即子图G1 是连通图 G 的生成树. 深度优先生成森林   右边的是深度优先生成森林: 连通图的生成树不一定是唯一的,不同的遍历图的方法得到不同的生成树;从不

poj1679——The Unique MST(次小生成树,Kruskal)

Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the followin

HDU 1389 继续畅通工程【最小生成树,Prime算法+Kruskal算法】

继续畅通工程 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 21871    Accepted Submission(s): 9356 Problem Description 省政府"畅通工程"的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可).现得到城镇道路统计表,表中列

hdu 1875 畅通工程再续(kruskal算法计算最小生成树)

畅通工程再续 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 18411    Accepted Submission(s): 5769 Problem Description 相信大家都听说一个"百岛湖"的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现.现在政府决定大力发展百岛湖,发展首先

ZOJ1372 POJ 1287 Networking 网络设计 Kruskal算法

题目链接:ZOJ1372 POJ 1287 Networking 网络设计 Networking Time Limit: 2 Seconds      Memory Limit: 65536 KB You are assigned to design network connections between certain points in a wide area. You are given a set of points in the area, and a set of possible

ZOJ 1718 POJ 2031 Building a Space Station 修建空间站 最小生成树 Kruskal算法

题目链接:ZOJ 1718 POJ 2031 Building a Space Station 修建空间站 Building a Space Station Time Limit: 2 Seconds      Memory Limit: 65536 KB You are a member of the space station engineering team, and are assigned a task in the construction process of the statio

POJ 2421 Constructing Roads 修建道路 最小生成树 Kruskal算法

题目链接:POJ 2421 Constructing Roads 修建道路 Constructing Roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 19698   Accepted: 8221 Description There are N villages, which are numbered from 1 to N, and you should build some roads such that e

最小生成树之Kruskal算法

上一篇文章中提到了最小生成树的Prim算法,这一节继续探讨一下最小生成树的Kruskal算法.什么是最小生成树算法上文已经交代过了,所以我们直接从Kruskal的步骤开始介绍. 1.Kruskal算法的步骤: a.假定拓扑图的边的集合是E,初始化最小生成树边集合G={}. b. 遍历集合E中的所有元素,并且按照权值的大小进行排序. c. 找出E中权值最小的边e . d .如果边e不和最小生成树集合G中的边构成环路,则将边e加到边集合G中:否则测试下一条权值次小的边,直到满足条件为止. e. 重复

Prim算法和Kruskal算法求最小生成树

Prim算法 连通分量是指图的一个子图,子图中任意两个顶点之间都是可达的.最小生成树是连通图的一个连通分量,且所有边的权值和最小. 最小生成树中,一个顶点最多与两个顶点邻接:若连通图有n个顶点,则最小生成树中一定有n-1条边. Prim算法需要两个线性表来进行辅助: visited: 标记已经加入生成树的顶点:(它的功能可以由tree取代) 初始状态:生成树根节点为真,其它为0. tree: 记录生成树,tree[x]保存顶点x的直接根节点下标,若x为树的根节点则tree[x]为其自身. 初始状