caffe的python接口学习(7):绘制loss和accuracy曲线

使用python接口来运行caffe程序,主要的原因是python非常容易可视化。所以不推荐大家在命令行下面运行python程序。如果非要在命令行下面运行,还不如直接用 c++算了。

推荐使用jupyter notebook,spyder等工具来运行python代码,这样才和它的可视化完美结合起来。

因为我是用anaconda来安装一系列python第三方库的,所以我使用的是spyder,与matlab界面类似的一款编辑器,在运行过程中,可以查看各变量的值,便于理解,如下图:

只要安装了anaconda,运行方式也非常方便,直接在终端输入spyder命令就可以了。

在caffe的训练过程中,我们如果想知道某个阶段的loss值和accuracy值,并用图表画出来,用python接口就对了。

# -*- coding: utf-8 -*-
"""
Created on Tue Jul 19 16:22:22 2016

@author: root
"""

import matplotlib.pyplot as plt
import caffe
caffe.set_device(0)
caffe.set_mode_gpu()
# 使用SGDSolver,即随机梯度下降算法
solver = caffe.SGDSolver(‘/home/xxx/mnist/solver.prototxt‘)  

# 等价于solver文件中的max_iter,即最大解算次数
niter = 9380
# 每隔100次收集一次数据
display= 100  

# 每次测试进行100次解算,10000/100
test_iter = 100
# 每500次训练进行一次测试(100次解算),60000/64
test_interval =938  

#初始化
train_loss = zeros(ceil(niter * 1.0 / display))
test_loss = zeros(ceil(niter * 1.0 / test_interval))
test_acc = zeros(ceil(niter * 1.0 / test_interval))  

# iteration 0,不计入
solver.step(1)  

# 辅助变量
_train_loss = 0; _test_loss = 0; _accuracy = 0
# 进行解算
for it in range(niter):
    # 进行一次解算
    solver.step(1)
    # 每迭代一次,训练batch_size张图片
    _train_loss += solver.net.blobs[‘SoftmaxWithLoss1‘].data
    if it % display == 0:
        # 计算平均train loss
        train_loss[it // display] = _train_loss / display
        _train_loss = 0  

    if it % test_interval == 0:
        for test_it in range(test_iter):
            # 进行一次测试
            solver.test_nets[0].forward()
            # 计算test loss
            _test_loss += solver.test_nets[0].blobs[‘SoftmaxWithLoss1‘].data
            # 计算test accuracy
            _accuracy += solver.test_nets[0].blobs[‘Accuracy1‘].data
        # 计算平均test loss
        test_loss[it / test_interval] = _test_loss / test_iter
        # 计算平均test accuracy
        test_acc[it / test_interval] = _accuracy / test_iter
        _test_loss = 0
        _accuracy = 0  

# 绘制train loss、test loss和accuracy曲线
print ‘\nplot the train loss and test accuracy\n‘
_, ax1 = plt.subplots()
ax2 = ax1.twinx()  

# train loss -> 绿色
ax1.plot(display * arange(len(train_loss)), train_loss, ‘g‘)
# test loss -> 黄色
ax1.plot(test_interval * arange(len(test_loss)), test_loss, ‘y‘)
# test accuracy -> 红色
ax2.plot(test_interval * arange(len(test_acc)), test_acc, ‘r‘)  

ax1.set_xlabel(‘iteration‘)
ax1.set_ylabel(‘loss‘)
ax2.set_ylabel(‘accuracy‘)
plt.show()
        

最后生成的图表在上图中已经显示出来了。

时间: 2024-10-19 16:04:23

caffe的python接口学习(7):绘制loss和accuracy曲线的相关文章

Caffe---自带工具 绘制loss和accuracy曲线

Caffe自带工具包---绘制loss和accuracy曲线 为什么要绘制loss和accuracy曲线?在训练过程中画出accuracy 和loss曲线能够更直观的观察网络训练的状态,以便更好的优化网络的训练.本文主要介绍在基于caffe框架训练网络时,利用caffe自带的工具包来绘制曲线.caffe中自带小工具: caffe-master/tools/extra/parse_log.sh, caffe-master/tools/extra/extract_seconds.py和 caffe-

caffe的python接口学习(4)mnist实例手写数字识别

以下主要是摘抄denny博文的内容,更多内容大家去看原作者吧 一 数据准备 准备训练集和测试集图片的列表清单; 二 导入caffe库,设定文件路径 # -*- coding: utf-8 -*- import caffe from caffe import layers as L,params as P,proto,to_proto #设定文件的保存路径 root='/home/xxx/' #根目录 train_list=root+'mnist/train/train.txt' #训练图片列表

caffe的python接口学习(6):用训练好的模型(caffemodel)来分类新的图片

经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测. 我们从mnist数据集的test集中随便找一张图片,用来进行实验. #coding=utf-8 import caffe import numpy as np root='/home/xxx/' #根目录 deploy=root + 'mnist/deploy.prototxt' #deploy文件 caffe_model=

caffe的python接口学习(8):caffemodel中的参数及特征的抽取

如果用公式  y=f(wx+b) 来表示整个运算过程的话,那么w和b就是我们需要训练的东西,w称为权值,在cnn中也可以叫做卷积核(filter),b是偏置项.f是激活函数,有sigmoid.relu等.x就是输入的数据. 数据训练完成后,保存的caffemodel里面,实际上就是各层的w和b值. 我们运行代码: deploy=root + 'mnist/deploy.prototxt' #deploy文件 caffe_model=root + 'mnist/lenet_iter_9380.ca

caffe的python接口学习(5):生成deploy文件

如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也.deploy文件没有第一层数据输入层,也没有最后的Accuracy层,但最后多了一个Softmax概率层. 这里我们采用代码的方式来自动生成该文件,以mnist为例. deploy.py # -*- coding: utf-8 -*- from caffe import layers as L,params as P,to_proto

caffe的python接口学习(3)训练模型training

如果不进行可视化,只想得到一个最终的训练model, 那么代码非常简单,如下 : import caffe caffe.set_device(0) caffe.set_mode_gpu() solver = caffe.SGDSolver('/home/xxx/data/solver.prototxt') solver.solve() 原文地址:https://www.cnblogs.com/niulang/p/8984829.html

ubuntu配置caffe的python接口pycaffe

参考网站: http://blog.csdn.net/sanmao5/article/details/51923982 (主要参考) https://github.com/BVLC/caffe/issues/782 (问题解决) ubuntu配置caffe的python接口pycaffe 依赖 前提caffe已经正确编译.见Ubuntu配置caffe 库包 sudo apt-get install python-pip sudo atp-get install python-dev python

解决caffe绘制训练过程的loss和accuracy曲线时候报错:paste: aux4.txt: 没有那个文件或目录 rm: 无法删除"aux4.txt": 没有那个文件或目录

我用的是faster-rcnn,在绘制训练过程的loss和accuracy曲线时候,抛出如下错误,在网上查找无数大牛博客后无果,自己稍微看了下代码,发现,extract_seconds.py文件的 get_start_time()函数在获取时间时候获取失败,因为if line.find('Solving') != -1:这个语句判断错误导致,具体解决办法: 将该函数改造成: def get_start_time(line_iterable, year):    """Find

caffe使用 python接口

使用caffe训练好的模型进行分类: http://blog.csdn.net/thy_2014/article/details/51648730 提取caffe前馈的中间结果+逐层可视化: http://blog.csdn.net/thy_2014/article/details/51659300