HDU 4828 逆元+catalan数

Grids

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 953    Accepted Submission(s): 418

Problem Description

  度度熊最近很喜欢玩游戏。这一天他在纸上画了一个2行N列的长方形格子。他想把1到2N这些数依次放进去,但是为了使格子看起来优美,他想找到使每行每列都递增的方案。不过画了很久,他发现方案数实在是太多了。度度熊想知道,有多少种放数字的方法能满足上面的条件?

Input

  第一行为数据组数T(1<=T<=100000)。
  然后T行,每行为一个数N(1<=N<=1000000)表示长方形的大小。

Output

  对于每组数据,输出符合题意的方案数。由于数字可能非常大,你只需要把最后的结果对1000000007取模即可。

Sample Input

2
1
3

Sample Output

Case #1:
1
Case #2:
5

Hint

对于第二组样例,共5种方案,具体方案为:

Source

2014年百度之星程序设计大赛 - 初赛(第一轮)

暴力找出前几项可知  1,2,5,14,42、、、容易看出是卡特兰数,递推公式   f(n+1)=(4*n-6)/n*f(n)  |  f(1)=f(2)=1   n>=2;

由于数很大需要取模用到了逆元,这里上界100w所以用了打表法,唯一要注意的一点就是,在处理4-6/n时,由于减法可能出现负数

我们写成 ( 4-6*inv[n]+mod )的形式但是这样还是会出现负数,因为6*inv[n]可能大于mod,这里只要多加几个mod即可解决

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 #define LL long long
 4 const LL mod=1e9+7;
 5 LL inv[1000005]={1,1};
 6 LL cat[1000005]={1,1,1};
 7 void init()
 8 {
 9     for(int i=2;i<=1000000;++i)
10         inv[i]=(mod-mod/i)*inv[mod%i]%mod;
11     for(int i=3;i<=1000001;++i)
12         cat[i]=cat[i-1]*((4+10*mod-6*inv[i-1])%mod)%mod;
13 }
14 int main()
15 {
16     int t,k=0,i,n;
17     scanf("%d",&t);
18     init();
19     for(i=1;i<=t;++i){
20         scanf("%d",&n);
21         printf("Case #%d:\n%lld\n",i,cat[n+2]);
22     }
23     return 0;
24 }
时间: 2024-10-10 02:35:19

HDU 4828 逆元+catalan数的相关文章

HDU 4828 - Grids (Catalan数)

题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=4828 Catalan数的公式为 C[n+1] = C[n] * (4 * n + 2) / (n + 2) 题目要求对M = 1e9+7 取模 利用乘法逆元将原式中除以(n+2)取模变为对(n+2)逆元的乘法取模 C[n+1] = C[n] * (4 * n + 2) * Pow(n+2, MOD-2) % MOD 其中Pow用快速幂解决 #include <cstdio> #include

HDU 1023 Catalan数+高精度

链接:HDU 1023 /**************************************** * author : Grant Yuan * time : 2014/10/19 15:51 * source : HDU 1023 * algorithm : Catalan数+高精度 * ***************************************/ import java.io.*; import java.math.*; import java.util.*;

HDU 4828 (卡特兰数+逆元)

HDU 4828 Grids 思路:可以转化为卡特兰数,先把前n个人标为0,后n个人标为1,然后去全排列,全排列的数列,如果每个1的前面对应的0大于等于1,那么就是满足的序列,如果把0看成入栈,1看成出栈,那么就等价于n个元素入栈出栈,求符合条件的出栈序列,这个就是卡特兰数了.然后去递推一下解,过程中需要求逆元去计算 代码: #include <stdio.h> #include <string.h> const int N = 1000005; const long long M

HDU 4828 (卡特兰数+逆)

HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0.后n个人标为1.然后去全排列,全排列的数列.假设每一个1的前面相应的0大于等于1,那么就是满足的序列,假设把0看成入栈,1看成出栈.那么就等价于n个元素入栈出栈,求符合条件的出栈序列,这个就是卡特兰数了. 然后去递推一下解,过程中须要求逆元去计算 代码: #include <stdio.h> #include <string.h> const int N = 1000005; const long long

hdu 4828 Grids(拓展欧几里得+卡特兰数)

题目链接:hdu 4828 Grids 题目大意:略. 解题思路:将上一行看成是入栈,下一行看成是出栈,那么执着的方案就是卡特兰数,用递推的方式求解. #include <cstdio> #include <cstring> typedef long long ll; const int N = 1000005; const ll MOD = 1e9+7; ll dp[N]; ll extendGcd(ll a, ll b, ll& x, ll& y) { if (

HNU 12933 Random Walks Catalan数 阶乘求逆元新技能

一个Catalan数的题,打表对每个数都求一次逆元会T,于是问到了一种求阶乘逆元的打表新方法. 比如打一个1~n的阶乘的逆元的表,假如叫inv[n],可以先用费马小定理什么的求出inv[n],再用递推公式求出前面的项. 我们记数字 x 的逆元为f(x) (%MOD). 因为 n! = (n-1)! * n 所以 f(n!) = f( (n-1)! * n) = f( (n-1)! ) * f(n). 所以 f( (n-1)! ) = f(n!) * f( f(n) ) = f(n!) * n  

HDU3240-Counting Binary Trees(Catalan数+求逆元(非互质))

Counting Binary Trees Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 564    Accepted Submission(s): 184 Problem Description There are 5 distinct binary trees of 3 nodes: Let T(n) be the number

C - Train Problem II——(HDU 1023 Catalan 数)

传送门 Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 7616    Accepted Submission(s): 4101 Problem Description As we all know the Train Problem I, the boss of the Ignatius Train

HDU 1023 Train Problem II 大数打表Catalan数

一个出栈有多少种顺序的问题.一般都知道是Catalan数了. 问题是这个Catalan数非常大,故此须要使用高精度计算. 并且打表会速度快非常多.打表公式要熟记: Catalan数公式 Cn=C(2n,n) / (n+1); 递推公式 C(n ) = C(n-1)*(4*n-2) / (n+1) 高精度乘以一个整数和高精度除以一个整数的知识.这样还是使用整数数组比較好计算,假设使用string那么就不太好计算了,由于整数也可能是多位的. const int MAX_N = 101; short