Vulkan Tutorial 18 重构交换链

操作系统:Windows8.1

显卡:Nivida GTX965M

开发工具:Visual Studio 2017


Introduction

现在我们已经成功的在屏幕上绘制出三角形,但是在某些情况下,它会出现异常情况。窗体surface会发生改变,使得交换链不在于其兼容。可能导致这种情况发生的原因之一是窗体的大小变化。我们必须在这个时机重新创建交换链。

Recreating the swap chain

添加新的函数recreateSwapChain并调用createSwapChain及依赖于交换链或者窗体大小的对象相关的所有创建函数。

void recreateSwapChain() {
    vkDeviceWaitIdle(device);

    createSwapChain();
    createImageViews();
    createRenderPass();
    createGraphicsPipeline();
    createFramebuffers();
    createCommandBuffers();
}

我们首先调用vkDeviceIdle,就像前一个章节提到的,我们不能触碰正在使用中的资源。很明显,要做的第一件事情就是重新创建交换链本身。图像视图也需要重新创建,因为它们直接建立在交换链图像基础上。渲染通道需要重新创建,因为它依赖交换链图像的格式。Viewport和scissor 矩形大小在图形管线创建时候指定的,所以管线需要重新构建。可以使用动态状态改变viewports和scissor rectangles,避免重新创建。最后帧缓冲区和命令缓冲区也需要重新创建,因为它们也依赖交换链的图像。

为了确保重新创建相关的对象之前,老版本的对象被系统正确回收清理,我们需要移动一些cleanup代码到不同的函数中,这样可以在recreateSwapChain函数调用。该函数定义为cleanupSwapChain:

void cleanupSwapChain() {

}

void recreateSwapChain() {
    vkDeviceWaitIdle(device);

    cleanupSwapChain();

    createSwapChain();
    createImageViews();
    createRenderPass();
    createGraphicsPipeline();
    createFramebuffers();
    createCommandBuffers();
}

我们从cleanup中将需要被重新创建的对象所对应的清理代码移动到cleanupSwapChain中:

void cleanupSwapChain() {
    for (size_t i = 0; i < swapChainFramebuffers.size(); i++) {
        vkDestroyFramebuffer(device, swapChainFramebuffers[i], nullptr);
    }

    vkFreeCommandBuffers(device, commandPool, static_cast<uint32_t>(commandBuffers.size()), commandBuffers.data());

    vkDestroyPipeline(device, graphicsPipeline, nullptr);
    vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
    vkDestroyRenderPass(device, renderPass, nullptr);

    for (size_t i = 0; i < swapChainImageViews.size(); i++) {
        vkDestroyImageView(device, swapChainImageViews[i], nullptr);
    }

    vkDestroySwapchainKHR(device, swapChain, nullptr);
}

void cleanup() {
    cleanupSwapChain();

    vkDestroySemaphore(device, renderFinishedSemaphore, nullptr);
    vkDestroySemaphore(device, imageAvailableSemaphore, nullptr);

    vkDestroyCommandPool(device, commandPool, nullptr);

    vkDestroyDevice(device, nullptr);
    DestroyDebugReportCallbackEXT(instance, callback, nullptr);
    vkDestroySurfaceKHR(instance, surface, nullptr);
    vkDestroyInstance(instance, nullptr);

    glfwDestroyWindow(window);

    glfwTerminate();
}

我们重头创建命令对象池command pool,但是比较浪费看起来。相反的,我们选择借助vkFreeCommandBuffers函数清理已经存在的命令缓冲区。这种方式可以重用对象池中已经分配的命令缓冲区。

以上部分就是重新创建交换链的工作!然而这样做的缺点就是在重新创建交换链完毕之前,会造成渲染停止。创建新交换链的同时允许在旧的交换链的图像上继续绘制命令。需要将之前的交换链传递到VkSwapchainCreateInfoKHR结构体中的oldSwapChain字段,并在使用之后立即销毁。

Window resizing



现在我们需要搞清楚哪些情况下重新创建交换链是必要的,并调用recreateSwapChain函数。一个通常的条件是窗体的大小变化。让我们调整窗体的大小,并观察捕捉到的事件。修改initWindow函数不再包含GLFW_RESIZABLE行,或者将其参数从GLFW_FALSE修改为GLFW_TRUE

void initWindow() {
    glfwInit();

    glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);

    window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr);

    glfwSetWindowUserPointer(window, this);
    glfwSetWindowSizeCallback(window, HelloTriangleApplication::onWindowResized);
}

...

static void onWindowResized(GLFWwindow* window, int width, int height) {
    if (width == 0 || height == 0) return;

    HelloTriangleApplication* app = reinterpret_cast<HelloTriangleApplication*>(glfwGetWindowUserPointer(window));
    app->recreateSwapChain();
}

glfwSetWindowSizeCallback函数会在窗体发生大小变化的时候被事件回调。遗憾的是,它只能接受一个指针作为参数,所以我们不能直接使用成员函数。但幸运的是,GLFW允许我们使用glfwSetWindowUserPointer将任意指针存储在窗体对象中,因此可以指定静态类成员调用glfwGetWindowUserPointer返回原始的实例对象。然后我们可以继续调用recreateSwapChain,这种情况通常发生在,窗体最小化并且导致交换链创建失败时.

chooseSwapExtent函数应该增加更新逻辑,使用窗体最新的widthheight代替最初的WIDTHHEIGHT:

int width, height;
glfwGetWindowSize(window, &width, &height);

VkExtent2D actualExtent = {width, height};

Suboptimal or out-of-date swap chain



有些时候Vulkan可能告诉我们当前的交换链在presentation时不再兼容。vkAcquireNextImageKHRvkQueuePresentKHR函数可以返回具体的值明确。

  • VK_ERROR_OUT_DATE_KHR: 交换链与surface不再兼容,不可进行渲染
  • VK_SUBOPTIMAL_KHR: 交换链仍然可以像surface提交图像,但是surface的属性不再匹配准确。比如平台可能重新调整图像的尺寸适应窗体大小。
VkResult result = vkAcquireNextImageKHR(device, swapChain, std::numeric_limits<uint64_t>::max(), imageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex);

if (result == VK_ERROR_OUT_OF_DATE_KHR) {
    recreateSwapChain();
    return;
} else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
    throw std::runtime_error("failed to acquire swap chain image!");
}

如果交换链获取图像timeout,表明不再可用。所以我们需要立即重新创建交换链,并在下一次drawFrame调用中尝试获取。

你也可以选择在交换链不是最佳状态的时候,选择重新创建,比如刚才说的大小不匹配问题。在这里因为我们已经获得了一个图像,所以继续进行。VK_SUCCESSVK_SUBOPTIMAL_KHR都被认为是“成功”返回码。

result = vkQueuePresentKHR(presentQueue, &presentInfo);

if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR) {
    recreateSwapChain();
} else if (result != VK_SUCCESS) {
    throw std::runtime_error("failed to present swap chain image!");
}

vkQueueWaitIdle(presentQueue);

vkQueuePresentKHR函数返回同样的值。在我们的案例中我们,如果是非最佳状态,也选择重新创建交换链。因为我们需要最好的效果。尝试调整窗体的大小,帧缓冲区的大小变化与窗体匹配。

Congratulations,我们完结了第一个运行比较完整的Vulkan程序,在下面的章节中我们尝试摆脱之前的硬编码,使用顶点缓冲区代替vertex shader中写死顶点数据。

项目代码 GitHub地址。

时间: 2024-10-26 02:09:27

Vulkan Tutorial 18 重构交换链的相关文章

[译]Vulkan教程(20)重建交换链

Swap chain recreation 重建交换链 Introduction 入门 The application we have now successfully draws a triangle, but there are some circumstances that it isn't handling properly yet. It is possible for the window surface to change such that the swap chain is n

Vulkan Tutorial 08 交换链

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 在这一章节,我们了解一下将渲染图像提交到屏幕的基本机制.这种机制成为交换链,并且需要在Vulkan上下文中被明确创建.从屏幕的角度观察,交换链本质上是一个图像队列.应用程序作为生产者会获取图像进行绘制,然后将其返还给交换链图像队列,等待屏幕消费.交换链的具体配置信息决定了应用程序提交绘制图像到队列的条件以及图像队列表现的效果,但交换链的通常使用目的是使绘制图像的最终呈现与屏幕的刷新

Vulkan Tutorial 06 逻辑设备与队列

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Introduction 在选择要使用的物理设备之后,我们需要设置一个逻辑设备用于交互.逻辑设备创建过程与instance创建过程类似,也需要描述我们需要使用的功能.因为我们已经查询过哪些队列簇可用,在这里需要进一步为逻辑设备创建具体类型的命令队列.如果有不同的需求,也可以基于同一个物理设备创建多个逻辑设备. 首先添加一个新的类成员来存储逻辑设备句柄. VkDevice devic

Vulkan Tutorial 13 Render passes

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Setup 在我们完成管线的创建工作,我们接下来需要告诉Vulkan渲染时候使用的framebuffer帧缓冲区附件相关信息.我们需要指定多少个颜色和深度缓冲区将会被使用,指定多少个采样器及如何在整个渲染操作中处理它们.所有的这些信息都被封装在一个叫做render pass的对象中,我们新添加一个createRenderPass函数.在initVulkan函数中确保createGr

Vulkan Tutorial 09 图像与视图

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 使用任何的VkImage,包括在交换链或者渲染管线中的,我们都需要创建VkImageView对象.从字面上理解它就是一个针对图像的视图或容器,通过它具体的渲染管线才能够读写渲染数据,换句话说VkImage不能与渲染管线进行交互.除此之外,图像视图可以进一步定义具体Image的格式,比如定义为2D贴图,那么本质上就不需要任何级别的mipmapping. 在本章节我们会新增一个crea

Vulkan Tutorial 12 Fixed functions

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 早起的图形API在图形渲染管线的许多阶段提供了默认的状态.在Vulkan中,从viewport的大小到混色函数,需要凡事做到亲历亲为.在本章节中我们会填充有关固有功能操作的所有结构体. Vertex input VkPipelineVertexInputStateCreateInfo结构体描述了顶点数据的格式,该结构体数据传递到vertex shader中.它以两种方式进行描述:

Vulkan Tutorial 15 Framebuffers

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 我们在前面的章节中已经讨论了很多次framebuffers帧缓冲区,到目前为止我们配置了render pass渲染通道并希望输出一个与交换链图像格式一致的帧缓冲区,但是我们实际上还没有创建. 在render pass创建阶段我们指定了具体的附件,并通过VkFramebuffer对象包装绑定.帧缓冲区对象引用表示为附件的所有的VkImageView对象.在我们的例子中只会使用一个帧缓

Vulkan Tutorial 04 理解Validation layers

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 What are validation layers? Vulkan API的设计核心是尽量最小化驱动程序的额外开销,所谓额外开销更多的是指向渲染以外的运算.其中一个具体的表现就是默认条件下,Vulkan API的错误检查的支持非常有限.即使遍历不正确的值或者将需要的参数传递为空指针,也不会有明确的处理逻辑,并且直接导致崩溃或者未定义的异常行为.之所以这样,是因为Vulkan要求每

Vulkan Tutorial 02 编写Vulkan应用程序框架原型

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 General structure 在上一节中,我们创建了一个正确配置.可运行的的Vulkan应用程序,并使用测试代码进行了测试.本节中我们从头开始,使用如下代码构建一个基于GLFW的Vulkan应用程序原型框架的雏形. #include <vulkan/vulkan.h> #include <iostream> #include <stdexcept>