图的最小生成树(二)—Prim算法

上一篇中写了图的最小生成树求法一——Kruskal算法 http://blog.csdn.net/wtyvhreal/article/details/43526695

这一篇中用另外一种方法来求解图的最小生成树,Prim算法。

图中随便选一个顶点开始,看看这个顶点有哪些边,在它的边中找一条最短的。1号有1-2,1-3,其中1-2短,选择1-2.通过它把1和2连接在一起。接下来开始枚举1和2号顶点所有的边,看看哪些边可以连接到没有被选中的顶点,并且边越短越好。

Prim算法的基本思路:

将图中的所有的顶点分为两类:树顶点(已经被选入生成树的顶点)和非树顶点(还未被选入生成树的顶点)。首先选择任意一个顶点加入生成树,接下来要找出一条边添加到生成树,这需要枚举每一个树顶点到每一个非树顶点所有的边,然后找到最短边加入到生成树。依次,重复操作n-1次,直到将所有顶点都加入生成树中。

Prim算法的流程:

输入数据:

运行结果:

时间复杂度O(N^2),如果用“堆”,每次选边的时间复杂度是O(logM),然后用邻接表来存储图的话,整个算法的时间复杂度会降低到O(MlogN)。

如果所有的边权都不相等,那么最小生成树是唯一的。

Kruskal算法是一步步将森林中的树进行合并,而Prim算法则是通过每次增加一条边来建立一棵树。

Kruskal算法更适用于稀疏图(找边),没有使用堆优化的Prim算法适用于稠密图(找点),使用了堆优化的Prim算法则更适用于稀疏图。

时间: 2024-10-29 05:03:03

图的最小生成树(二)—Prim算法的相关文章

图的最小生成树:Prim算法实现

图的最小生成树,就是基于图,假设其有n的顶点,那么就要构建一颗连通树,使其各边权重和最小.最小生成树的实现算法主要有两种:Prim算法和Kruskal算法.本文着重介绍Prim算法及其实现,其中图的实现以及相关操作,采用前面博文C++ 图的实现中的实现方式,由于本文重点在于Prim算法的实现,所有就不在图的构建以及相关操作中过多赘述. 首先来看Prim算法,维基的解释其实已经很详细了,算法思想很好理解,不多说明,直接看实现. /* *无向图查找最小树:Prim算法 *不断找已知顶点邻接边中的最小

Hihocoder 之 #1097 : 最小生成树一·Prim算法 (用vector二维 模拟邻接表,进行prim()生成树算法, *【模板】)

#1097 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但是,问题也接踵而来——小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道路所需要的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A.B.C三座城市,只需要在AB之间和BC之间建造道路,那么AC之间也是可以通过

数据结构--图--最小生成树(Prim算法)

构造连通网的最小生成树,就是使生成树的边的权值之和最小化.常用的有Prim和Kruskal算法.先看Prim算法:假设N={V,{E}}是连通网,TE是N上最小生成树中边的集合.算法从U={u0}(uo属于V),TE={}开始,重复执行下述操作:在所有u属于U,v属于V-U的边(u,v)属于E中找到代价最小的一条边(u0,v0)并入集合TE,同时v0并入U,直至U=V为止.此时TE中必有n-1条边,T={V,{TE}}为N的最小生成树.为实现此算法,需另设一个辅助数组closedge,以记录从U

最小生成树(prim算法,Kruskal算法)c++实现

1.生成树的概念 连通图G的一个子图如果是一棵包含G的所有顶点的树,则该子图称为G的生成树. 生成树是连通图的极小连通子图.所谓极小是指:若在树中任意增加一条边,则将出现一个回路:若去掉一条边,将会使之变成非连通图. 生成树各边的权值总和称为生成树的权.权最小的生成树称为最小生成树. 2.最小生成树的性质用哲学的观点来说,每个事物都有自己特有的性质,那么图的最小生成树也是不例外的.按照生成树的定义,n 个顶点的连通网络的生成树有 n 个顶点.n-1 条边. 3.构造最小生成树,要解决以下两个问题

最小生成树的Prim算法

构造最小生成树的Prim算法 假设G=(V,E)为一连通网,其中V为网中所有顶点的集合,E为网中所有带权边的集合.设置两个新的集合U和T,其中集合U用于存放G的最小生成树的顶点,集合T用于存放G的最小生成树中的边.令集合U的初值为U={u0}(假设构造最小生成树时是从顶点u0出发),集合T的初值为T={}.Prim算法的思想是:在连通网中寻找一个顶点落入U集,另外一个顶点落入V-U集的这个顶点加入到U集中,然后继续寻找一顶点在U集而另一顶点在V-U集且权值最小的边放入T集;如果不断重复直到U=V

最小生成树之Prim算法

Prim算法: 假设N = (V,{E})是连通网,TE是N上最小生成树中边的集合.算法从U={u0}(u0属于V),TE={}开始,重复执行下述操作:在所有u属于U,v属于V-U的边(u,v)属于E中找到一条代价最小的边(u0,v0)并入集合TE,同时v0并入U,直至U=V为止,此时TE中必有n-1条边,则T=(V,{TE})为N的最小生成树. 为实现这个算法,需附设一个辅助数组closedge,以记录从U到V-U具有最小代价的边.对每个顶点vi属于V-U,在辅助数组中存在一个相应分量clos

hihoCoder #1097 最小生成树之Prim算法

原题网址,http://hihocoder.com/problemset/problem/1097 #1097 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但 是,问题也接踵而来——小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道路所需要的费用,小Hi希望知道,最少花费多少就 可以使得任意两座城市都可以通过所建

hihoCoder - hiho一下 第二十六周 - A - 最小生成树一·Prim算法

题目1 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但是,问题也接踵而来--小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道路所需要的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A.B.C三座城市,只需要在AB之间和BC之间建造道路,那么AC之间也是可以通过这两

hiho一下 第二十六周---最小生成树一·Prim算法

最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但是,问题也接踵而来--小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道路所需要的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A.B.C三座城市,只需要在AB之间和BC之间建造道路,那么AC之间也是可以通过这两条道路连通的

Hihocoder #1098 : 最小生成树二·Kruscal算法 ( *【模板】 )

#1098 : 最小生成树二·Kruscal算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用了——但是幸运的是,经过计算机的分析,小Hi已经筛选出了一些比较适合建造道路的路线,这个数量并没有特别的大. 所以问题变成了——小Hi现在手上拥有N座城市,且已知其中一些城市间建造道路的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以 通过所建造的道路互相到达(假设有A.B.C三座城市