学习中的梯度下降Ⅱ-学习率

调试梯度下降。用x轴上的迭代数绘制一个图。现在测量成本函数,J(θ)随迭代次数下降。如果J(θ)不断增加,那么你可能需要减少α。

自动收敛试验。如果该声明收敛(θ)小于E在一次迭代中减少,其中E是一些小的值,如10?3。然而,在实践中很难选择这个阈值。

它已被证明,如果学习率α足够小,那么J(θ)每次迭代都减小。

总结:
如果α太小,收敛速度慢
如果α太大:?可能不会在每次迭代不收敛,从而降低。

时间: 2024-10-11 19:51:10

学习中的梯度下降Ⅱ-学习率的相关文章

讲透机器学习中的梯度下降

本文始发于个人公众号:TechFlow,原创不易,求个关注 在之前的文章当中,我们一起推导了线性回归的公式,今天我们继续来学习上次没有结束的内容. 上次我们推导完了公式的时候,曾经说过由于有许多的问题,比如最主要的复杂度问题.随着样本和特征数量的增大,通过公式求解的时间会急剧增大,并且如果特征为空,还会出现公式无法计算的情况.所以和直接公式求解相比,实际当中更倾向于使用另外一种方法来代替,它就是今天这篇文章的主角--梯度下降法. 梯度下降法可以说是机器学习和深度学习当中最重要的方法,可以说是没有

【吴恩达机器学习】学习笔记——2.7第一个学习算法=线性回归+梯度下降

梯度下降算法: 线性回归模型: 线性假设: 平方差成本函数: 将各个公式代入,对θ0.θ1分别求偏导得: 再将偏导数代入梯度下降算法,就可以实现寻找局部最优解的过程了. 线性回归的成本函数总是一个凸函数,故梯度下降算法执行后只有一个最小值. "批"梯度下降:每一个步骤都使用所有的训练样本 原文地址:https://www.cnblogs.com/JJJanepp/p/8454834.html

NN优化方法对比:梯度下降、随机梯度下降和批量梯度下降

1.前言 这几种方法呢都是在求最优解中经常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中,都是围绕以下这个式子展开: 其中在上面的式子中hθ(x)代表,输入为x的时候的其当时θ参数下的输出值,与y相减则是一个相对误差,之后再平方乘以1/2,并且其中 注意到x可以一维变量,也可以是多维变量,实际上最常用的还是多维变量.我们知道曲面上方向导数的最大值的方向就代表了梯度的方向,因此我们在做梯度下降的时候,应该是沿着梯度的反方向进行权重的更新,可以有效的找到全局的最优解.这个θ的更新过程可以描

机器学习中梯度下降法和牛顿法的比较

在机器学习的优化问题中,梯度下降法和牛顿法是常用的两种凸函数求极值的方法,他们都是为了求得目标函数的近似解.在逻辑斯蒂回归模型的参数求解中,一般用改良的梯度下降法,也可以用牛顿法.由于两种方法有些相似,我特地拿来简单地对比一下.下面的内容需要读者之前熟悉两种算法. 梯度下降法 梯度下降法用来求解目标函数的极值.这个极值是给定模型给定数据之后在参数空间中搜索找到的.迭代过程为: 可以看出,梯度下降法更新参数的方式为目标函数在当前参数取值下的梯度值,前面再加上一个步长控制参数alpha.梯度下降法通

梯度下降优化算法综述

本文翻译自Sebastian Ruder的"An overview of gradient descent optimization algoritms",作者首先在其博客中发表了这篇文章,其博客地址为:An overview of gradient descent optimization algoritms,之后,作者将其整理完放在了arxiv中,其地址为:An overview of gradient descent optimization algoritms,在翻译的过程中以

神经网络系列之二 -- 反向传播与梯度下降

系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 第2章 神经网络中的三个基本概念 2.0 通俗地理解三大概念 这三大概念是:反向传播,梯度下降,损失函数. 神经网络训练的最基本的思想就是:先"猜"一个结果,我们叫预测结果a,看看这个预测结果和事先标记好的训练集中的真实结果y之间的差距,然后调整策略,再试一次,这一次就不是"猜"了,而是有依据地向正确的方向靠近.如此反复多次

梯度下降法和牛顿法

在机器学习的优化问题中,梯度下降法和牛顿法是常用的两种凸函数求极值的方法,他们都是为了求得目标函数的近似解.在逻辑斯蒂回归模型的参数求解中,一般用改良的梯度下降法,也可以用牛顿法.由于两种方法有些相似,我特地拿来简单地对比一下.下面的内容需要读者之前熟悉两种算法. 梯度下降法 梯度下降法用来求解目标函数的极值.这个极值是给定模型给定数据之后在参数空间中搜索找到的.迭代过程为: 可以看出,梯度下降法更新参数的方式为目标函数在当前参数取值下的梯度值,前面再加上一个步长控制参数alpha.梯度下降法通

机器学习:线性回归——理论与代码实现(基于正规方程与梯度下降)

一 线性模型 给定由n个属性描述的列向量\(f(\mathbf{x})={(x^{(1)};x^{(2)};...;x^{(n)})}\),其中 \(x^{(j)}\)是\(\textbf{x}\)在第\(j\)个属性的取值.线性模型即为通过对属性进行线性组合的函数,即 \[f(\mathbf{x})=w_0+w_1x^{(1)}+...+w_nx^{(n)}\] 写成向量形式如下: \[f(\textbf{x})=\mathbf{w}^\mathrm{T}\mathbf{x}\] 其中列向量\

最优化方法--梯度下降

梯度下降:实现梯度下降.线性回归中的梯度下降 随机梯度下降:相关代码即调用 本文参考:公众号<数据科学家联盟>文章 转自:https://www.cnblogs.com/huangyc/p/9801261.html#_label1_0 一.概念 梯度下降(Gradient Descent, GD)不是一个机器学习算法,而是一种基于搜索的最优化方法.梯度下降(Gradient Descent, GD)优化算法,其作用是用来对原始模型的损失函数进行优化,以便寻找到最优的参数,使得损失函数的值最小.