Description
We all love recursion! Don‘t we?
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
Input
The input for your program will be a series of integer triples, one per line, until the end-of-file flag of -1 -1 -1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result.
Output
Print the value for w(a,b,c) for each triple.
Sample Input
1 1 1 2 2 2 10 4 6 50 50 50 -1 7 18 -1 -1 -1
Sample Output
w(1, 1, 1) = 2 w(2, 2, 2) = 4 w(10, 4, 6) = 523 w(50, 50, 50) = 1048576 w(-1, 7, 18) = 1 按照题目要求去递归搜索 因为产生了大量的子递归(重复) 所以肯定会超时 所以需要用到 记忆化搜索 把每个递归的a,b,c值保存起来 下次即可直接使用 代码#include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std; int q[50][50][50]; //记忆化搜索 int recursive(int a,int b,int c) { if(a<=0||b<=0||c<=0) return 1; if(q[a][b][c]!=0) return q[a][b][c]; //直接使用 else if(a>20||b>20||c>20) return recursive(20,20,20); else if(a<b&&b<c) return q[a][b][c]=recursive(a,b,c-1)+recursive(a,b-1,c-1)-recursive(a,b-1,c); // 保存 else return q[a][b][c]=recursive(a-1,b,c)+recursive(a-1,b-1,c)+recursive(a-1,b,c-1)-recursive(a-1,b-1,c-1); //保存 } int main() { int a,b,c,s; while(cin>>a>>b>>c) { memset(q,0,sizeof(q)); if(a==-1&&b==-1&&c==-1) break; s=recursive(a,b,c); printf("w(%d, %d, %d) = %d\n",a,b,c,s); } return 0; }