题目:
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2)
代码:
class Solution { public: vector<vector<int> > threeSum(vector<int> &num) { std::vector<std::vector<int> > ret_vector; if (num.size() < 3) { return ret_vector; } // sort the vector std::sort(num.begin(), num.end()); // visit all the left side element of the current element const int target = 0; std::vector<int>::iterator end = num.end(); for (std::vector<int>::iterator i = num.begin(); i != end-2; ++i){ // ignore first duplicate i if ( i > num.begin() && *i==*(i-1)) continue; std::vector<int>::iterator j = i+1; std::vector<int>::iterator k = end-1; while (j<k){ const int tmp = *i+*j+*k; if ( tmp < target ){ ++j; while ( *j==*(j-1) && j<k ) ++j; } else if ( tmp > target ){ --k; while ( *k==*(k+1) && j<k ) --k; } else{ int tmp_triple[3] = {*i,*j,*k}; std::vector<int> tmp_vector(tmp_triple,tmp_triple+3); ret_vector.push_back(tmp_vector); ++j; --k; while( *j==*(j-1) && *k==*(k+1) && j<k ) { ++j; --k; } } } } return ret_vector; } };
Tips:
1. 先对传入的vector排序,然后从前向后遍历。原则是:包含*i元素,且满足条件的triple都加入到返回结果中
2. 这里比较困难的一点是排除重复的triple,大概想一想原则,一些极端的case只能试验出来了
另,在mac上编辑的,不知道为什么用数组初始化vector编译不通过,所以采用了比较麻烦的传参方式
时间: 2024-09-30 19:42:05