poj 1384

Piggy-Bank

Description

Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it‘s weight in grams.

Output

Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.".

Sample Input

3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4

Sample Output

The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.

完全背包问题,顺序枚举v,f[v]定义为所装物品体积刚好为v时能获得的最大价值,所以初始时,f[0]=0, f[i] = inf (i != 0)
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#define ma 1010
#define inf 500000001
using namespace std;
int p[ma],w[ma],f[10000];     //面值,重量
int get()
{
	int ans=0,f=1;char ch=getchar();
	while(!isdigit(ch)) {if(ch==‘-‘) f=-1;ch=getchar();}
	while(isdigit(ch)) {ans=ans*10+ch-‘0‘;ch=getchar();}
	return ans*f;
}
void init(int v)
{
	for(int i=0;i<=v;i++)
	  f[i]=inf;
	f[0]=0;
}
int main()
{
	int t=get(),v,va,vb,n;
	while(t--)
	{
		va=get();vb=get();
		v=vb-va;
		n=get();
		for(int i=1;i<=n;i++)
		{
			p[i]=get();w[i]=get();
		}
		init(v);
		for(int i=1;i<=n;i++)
		  for(int j=1;j<=v;j++)
		    if(j>=w[i])           ///////不要忘记判断是否合法
		    f[j]=min(f[j],f[j-w[i]]+p[i]);
		if(f[v]==inf)
		  printf("This is impossible.\n");
		else
		  printf("The minimum amount of money in the piggy-bank is %d.\n",f[v]);
	}
	return 0;
}

  

 
时间: 2024-11-08 21:26:50

poj 1384的相关文章

poj 1384 Piggy-Bank(完全背包)

http://poj.org/problem?id=1384 Piggy-Bank Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7900 Accepted: 3813 Description Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income f

POJ 1384 Piggy-Bank 背包DP

所谓的完全背包,就是说物品没有限制数量的. 怎么起个这么intimidating(吓人)的名字? 其实和一般01背包没多少区别,不过数量可以无穷大,那么就可以利用一个物品累加到总容量结尾就可以了. 本题要求装满的,故此增加个限制就可以了. #include <stdio.h> #include <stdlib.h> #include <string.h> inline int min(int a, int b) { return a < b? a : b; } c

poj 1384 Piggy-Bank(全然背包)

http://poj.org/problem?id=1384 Piggy-Bank Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7900 Accepted: 3813 Description Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income f

POJ 1384 Piggy-Bank(完全背包)

http://poj.org/problem?id=1384 题意: 现在有n种硬币,每种硬币有特定的重量cost[i] 克和它对应的价值val[i]. 每种硬币可以无限使用. 已知现在一个储蓄罐中所有硬币的总重量正好为m克, 问你这个储蓄罐中最少有多少价值的硬币? 如果不可能存在m克的情况, 那么就输出" This is impossible.". 分析: 由于每种硬币可以无限使用, 所以是明显的完全背包问题. 本题的限制条件: 硬币总重量正好等于m. 本题的目标条件: 硬币总价值尽

poj 1384 Piggy-Bank (完全背包)

http://poj.org/problem?id=1384 题意:给出一个储蓄罐 的空和满时的重量 再给出n种硬币的 value 和 weight 问满足正好装满罐子时的最小价值是多少 思路 : if(dp[j]>dp[j-w[i]]+v[i]) dp[j]=dp[j-w[i]]+v[i]; #include<cstdio> #include<cstring> #include<cmath> #include<iostream> #include&l

POJ 1384 Intervals (线性差分约束,根据不等式建图,然后跑spfa)

传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1384 Intervals Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4841    Accepted Submission(s): 1815 Problem Description You are given n closed, in

POJ 1384 Piggy-Bank 完全背包分析

给定储蓄罐空的和满的重量,有n种硬币,硬币有价值和重量,给出各种硬币的价值p[i]和对应的重量w[i],求储蓄罐里面硬币的最小价值,如果没有符合要求的放硬币的方式,输出 “this is impossible”. 思路: 相当于完全背包求最小值,n中硬币对应n个物体,物体可以取无限次,存储罐里硬币重量(满罐减空罐)相当于背包的体积V. 法一: 直接扩展01背包的方程,用dp[i,v]表示取前i种硬币,存储罐重量最大为v时的最小价值.状态转移方程为:dp[i,v]=min(dp[i-1,v-k*w

POJ 1384(完全背包)

题目大意:给出罐子的初始重量和装满钱币后的重量,然后给出几组钱币的类型(币值和重量),问装满这个罐子后最少可以放多少钱. 思路:主要是注意初始化,然后写出状态方程,dp[v]=min(dp[v],dp[v-w[j]]+c[j]); 代码如下: #include <iostream>#include <stdio.h>#include <memory.h>#include <math.h>#define MAX 1000000using namespace s

POJ 1384 Piggy-Bank【完全背包】+【恰好完全装满】

题目链接:https://vjudge.net/contest/217847#problem/A 题目大意:   现在有n种硬币,每种硬币有特定的重量cost[i] 克和它对应的价值val[i]. 每种硬币可以无限使用. 已知现在一个储蓄罐中所有硬币的总重量正好为m克, 问你这个储蓄罐中最少有多少价值的硬币? 如果不可能存在m克的情况, 那么就输出" This is impossible.". 解题分析: 由于每种硬币可以无限使用, 所以是明显的完全背包问题,dp[i][j]为只用前i