如何提升爬虫的性能

一:背景知识

爬虫的本质就是一个socket客户端与服务端通信的过程,如果我们有多个url待爬取,只用一个线程并且采用串行的方式执行,那么只能等待爬取结束后才能继续下一个,效率非常的低

需要强调的是:对于单线程下串行N个任务,并不完全等同于低效,如果这N个任务都是纯计算的任务,那么该线程对cpu的利用率仍然会很高,之所以单线程下串行多个爬虫任务低效,是因为爬虫任务是明显的IO密集型程序

二:同步,异步,回调机制

1、同步调用:即提交一个任务后就在原地等待任务结束,等到拿到任务的结果后再继续下一行代码,效率低下

同步调用

import requests

def parse_page(res):
    print(‘解析 %s‘ %(len(res)))

def get_page(url):
    print(‘下载 %s‘ %url)
    response=requests.get(url)
    if response.status_code == 200:
        return response.text

urls=[‘https://www.baidu.com/‘,‘http://www.sina.com.cn/‘,‘https://www.python.org‘]
for url in urls:
    res=get_page(url) #调用一个任务,就在原地等待任务结束拿到结果后才继续往后执行
    parse_page(res)

2、一个简单的解决方案:多线程或多进程

在服务器端使用多线程(或多进程)。多线程(或多进程)的目的是让每个连接都拥有独立的线程(或进程),这样任何一个连接的阻塞都不会影响其他的连接。

多进程或者多线程
#IO密集型程序应该用多线程
import requests
from threading import Thread,current_thread

def parse_page(res):
    print(‘%s 解析 %s‘ %(current_thread().getName(),len(res)))

def get_page(url,callback=parse_page):
    print(‘%s 下载 %s‘ %(current_thread().getName(),url))
    response=requests.get(url)
    if response.status_code == 200:
        callback(response.text)

if __name__ == ‘__main__‘:
    urls=[‘https://www.baidu.com/‘,‘http://www.sina.com.cn/‘,‘https://www.python.org‘]
    for url in urls:
        t=Thread(target=get_page,args=(url,))
        t.start()

   该方案的问题是:

开启多进程或都线程的方式,我们是无法无限制地开启多进程或多线程的:在遇到要同时响应成百上千路的连接请求,则无论多线程还是多进程都会严重占据系统资源,降低系统对外界响应效率,而且线程与进程本身也更容易进入假死状态。

3、改进方案: 线程池或进程池+异步调用:提交一个任务后并不会等待任务结束,而是继续下一行代码

#很多程序员可能会考虑使用“线程池”或“连接池”。“线程池”旨在减少创建和销毁线程的频率,其维持一定合理数量的线程,并让空闲的线程重新承担新的执行任务。“连接池”维持连接的缓存池,尽量重用已有的连接、减少创建和关闭连接的频率。这两种技术都可以很好的降低系统开销,都被广泛应用很多大型系统,如websphere、tomcat和各种数据库等。
进程池或线程池:异步调用+回调机制

#IO密集型程序应该用多线程,所以此时我们使用线程池
import requests
from threading import current_thread
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor

def parse_page(res):
    res=res.result()
    print(‘%s 解析 %s‘ %(current_thread().getName(),len(res)))

def get_page(url):
    print(‘%s 下载 %s‘ %(current_thread().getName(),url))
    response=requests.get(url)
    if response.status_code == 200:
        return response.text

if __name__ == ‘__main__‘:
    urls=[‘https://www.baidu.com/‘,‘http://www.sina.com.cn/‘,‘https://www.python.org‘]

    pool=ThreadPoolExecutor(50)
    # pool=ProcessPoolExecutor(50)
    for url in urls:
        pool.submit(get_page,url).add_done_callback(parse_page)

    pool.shutdown(wait=True)

进程池或线程池:异步调用+回调机制

改进后方案其实也存在着问题:

#“线程池”和“连接池”技术也只是在一定程度上缓解了频繁调用IO接口带来的资源占用。而且,所谓“池”始终有其上限,当请求大大超过上限时,“池”构成的系统对外界的响应并不比没有池的时候效果好多少。所以使用“池”必须考虑其面临的响应规模,并根据响应规模调整“池”的大小。

  对应上例中的所面临的可能同时出现的上千甚至上万次的客户端请求,“线程池”或“连接池”或许可以缓解部分压力,但是不能解决所有问题。总之,多线程模型可以方便高效的解决小规模的服务请求,但面对大规模的服务请求,多线程模型也会遇到瓶颈,可以用非阻塞接口来尝试解决这个问题。

三 高性能

上述无论哪种解决方案其实没有解决一个性能相关的问题:IO阻塞,无论是多进程还是多线程,在遇到IO阻塞时都会被操作系统强行剥夺走CPU的执行权限,程序的执行效率因此就降低了下来。

解决这一问题的关键在于,我们自己从应用程序级别检测IO阻塞然后切换到我们自己程序的其他任务执行,这样把我们程序的IO降到最低,我们的程序处于就绪态就会增多,以此来迷惑操作系统,操作系统便以为我们的程序是IO比较少的程序,从而会尽可能多的分配CPU给我们,这样也就达到了提升程序执行效率的目的

1、在python3.3之后新增了asyncio模块,可以帮我们检测IO(只能是网络IO),实现应用程序级别的切换

import asyncio

@asyncio.coroutine
def task(task_id,senconds):
    print(‘%s is start‘ %task_id)
    yield from asyncio.sleep(senconds) #只能检测网络IO,检测到IO后切换到其他任务执行
    print(‘%s is end‘ %task_id)

tasks=[task(task_id="任务1",senconds=3),task("任务2",2),task(task_id="任务3",senconds=1)]

loop=asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
loop.close()

2、但asyncio模块只能发tcp级别的请求,不能发http协议,因此,在我们需要发送http请求的时候,需要我们自定义http报头

asyncio+自定义http协议报头

import asyncio
import requests
import uuid
user_agent=‘Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.221 Safari/537.36 SE 2.X MetaSr 1.0‘

def parse_page(host,res):
    print(‘%s 解析结果 %s‘ %(host,len(res)))
    with open(‘%s.html‘ %(uuid.uuid1()),‘wb‘) as f:
        f.write(res)

@asyncio.coroutine
def get_page(host,port=80,url=‘/‘,callback=parse_page,ssl=False):
    print(‘下载 http://%s:%s%s‘ %(host,port,url))

    #步骤一(IO阻塞):发起tcp链接,是阻塞操作,因此需要yield from
    if ssl:
        port=443
    recv,send=yield from asyncio.open_connection(host=host,port=443,ssl=ssl)

    # 步骤二:封装http协议的报头,因为asyncio模块只能封装并发送tcp包,因此这一步需要我们自己封装http协议的包
    request_headers="""GET %s HTTP/1.0\r\nHost: %s\r\nUser-agent: %s\r\n\r\n""" %(url,host,user_agent)
    # requset_headers="""POST %s HTTP/1.0\r\nHost: %s\r\n\r\nname=egon&password=123""" % (url, host,)
    request_headers=request_headers.encode(‘utf-8‘)

    # 步骤三(IO阻塞):发送http请求包
    send.write(request_headers)
    yield from send.drain()

    # 步骤四(IO阻塞):接收响应头
    while True:
        line=yield from recv.readline()
        if line == b‘\r\n‘:
            break
        print(‘%s Response headers:%s‘ %(host,line))

    # 步骤五(IO阻塞):接收响应体
    text=yield from recv.read()

    # 步骤六:执行回调函数
    callback(host,text)

    # 步骤七:关闭套接字
    send.close() #没有recv.close()方法,因为是四次挥手断链接,双向链接的两端,一端发完数据后执行send.close()另外一端就被动地断开

if __name__ == ‘__main__‘:
    tasks=[
        get_page(‘www.baidu.com‘,url=‘/s?wd=美女‘,ssl=True),
        get_page(‘www.cnblogs.com‘,url=‘/‘,ssl=True),
    ]

    loop=asyncio.get_event_loop()
    loop.run_until_complete(asyncio.wait(tasks))
    loop.close()

asyncio+自定义http协议报头

3、自定义http报头多少有点麻烦,于是有了aiohttp模块,专门帮我们封装http报头,然后我们还需要用asyncio检测IO实现切换

import aiohttp
import asyncio

@asyncio.coroutine
def get_page(url):
    print(‘GET:%s‘ %url)
    response=yield from aiohttp.request(‘GET‘,url)

    data=yield from response.read()

    print(url,data)
    response.close()
    return 1

tasks=[
    get_page(‘https://www.python.org/doc‘),
    get_page(‘https://www.cnblogs.com/linhaifeng‘),
    get_page(‘https://www.openstack.org‘)
]

loop=asyncio.get_event_loop()插入代码 - 博客园
results=loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

print(‘=====>‘,results) #[1, 1, 1]

asyncio+aiohttp

asyncio+aiohttp

4、此外,还可以将requests.get函数传给asyncio,就能够被检测了

import requests
import asyncio

@asyncio.coroutine
def get_page(func,*args):
    print(‘GET:%s‘ %args[0])
    loog=asyncio.get_event_loop()
    furture=loop.run_in_executor(None,func,*args)
    response=yield from furture

    print(response.url,len(response.text))
    return 1

tasks=[
    get_page(requests.get,‘https://www.python.org/doc‘),
    get_page(requests.get,‘https://www.cnblogs.com/linhaifeng‘),
    get_page(requests.get,‘https://www.openstack.org‘)
]

loop=asyncio.get_event_loop()
results=loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

print(‘=====>‘,results) #[1, 1, 1]

asyncio+requests模块的方法

asyncio+requests模块的方法

5、还有之前在协程时介绍的gevent模块

from gevent import monkey;monkey.patch_all()
import gevent
import requests

def get_page(url):
    print(‘GET:%s‘ %url)
    response=requests.get(url)
    print(url,len(response.text))
    return 1

# g1=gevent.spawn(get_page,‘https://www.python.org/doc‘)
# g2=gevent.spawn(get_page,‘https://www.cnblogs.com/linhaifeng‘)
# g3=gevent.spawn(get_page,‘https://www.openstack.org‘)
# gevent.joinall([g1,g2,g3,])
# print(g1.value,g2.value,g3.value) #拿到返回值

#协程池
from gevent.pool import Pool
pool=Pool(2)
g1=pool.spawn(get_page,‘https://www.python.org/doc‘)
g2=pool.spawn(get_page,‘https://www.cnblogs.com/linhaifeng‘)
g3=pool.spawn(get_page,‘https://www.openstack.org‘)
gevent.joinall([g1,g2,g3,])
print(g1.value,g2.value,g3.value) #拿到返回值

gevent+requests

gevent+requests

6、封装了gevent+requests模块的grequests模块

#pip3 install grequests

import grequests

request_list=[
    grequests.get(‘https://wwww.xxxx.org/doc1‘),
    grequests.get(‘https://www.cnblogs.com/linhaifeng‘),
    grequests.get(‘https://www.openstack.org‘)
]

##### 执行并获取响应列表 #####
# response_list = grequests.map(request_list)
# print(response_list)

##### 执行并获取响应列表(处理异常) #####
def exception_handler(request, exception):
    # print(request,exception)
    print("%s Request failed" %request.url)

response_list = grequests.map(request_list, exception_handler=exception_handler)
print(response_list)

grequests

grequests

7、twisted:是一个网络框架,其中一个功能是发送异步请求,检测IO并自动切换

‘‘‘
#问题一:error: Microsoft Visual C++ 14.0 is required. Get it with "Microsoft Visual C++ Build Tools": http://landinghub.visualstudio.com/visual-cpp-build-tools
https://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
pip3 install C:\Users\Administrator\Downloads\Twisted-17.9.0-cp36-cp36m-win_amd64.whl
pip3 install twisted

#问题二:ModuleNotFoundError: No module named ‘win32api‘
https://sourceforge.net/projects/pywin32/files/pywin32/

#问题三:openssl
pip3 install pyopenssl
‘‘‘

#twisted基本用法
from twisted.web.client import getPage,defer
from twisted.internet import reactor

def all_done(arg):
    # print(arg)
    reactor.stop()

def callback(res):
    print(res)
    return 1

defer_list=[]
urls=[
    ‘http://www.baidu.com‘,
    ‘http://www.bing.com‘,
    ‘https://www.python.org‘,
]
for url in urls:
    obj=getPage(url.encode(‘utf=-8‘),)
    obj.addCallback(callback)
    defer_list.append(obj)

defer.DeferredList(defer_list).addBoth(all_done)

reactor.run()

#twisted的getPage的详细用法
from twisted.internet import reactor
from twisted.web.client import getPage
import urllib.parse

def one_done(arg):
    print(arg)
    reactor.stop()

post_data = urllib.parse.urlencode({‘check_data‘: ‘adf‘})
post_data = bytes(post_data, encoding=‘utf8‘)
headers = {b‘Content-Type‘: b‘application/x-www-form-urlencoded‘}
response = getPage(bytes(‘http://dig.chouti.com/login‘, encoding=‘utf8‘),
                   method=bytes(‘POST‘, encoding=‘utf8‘),
                   postdata=post_data,
                   cookies={},
                   headers=headers)
response.addBoth(one_done)

reactor.run()

twisted的用法

twisted的用法

8、tornado

from tornado.httpclient import AsyncHTTPClient
from tornado.httpclient import HTTPRequest
from tornado import ioloop

def handle_response(response):
    """
    处理返回值内容(需要维护计数器,来停止IO循环),调用 ioloop.IOLoop.current().stop()
    :param response:
    :return:
    """
    if response.error:
        print("Error:", response.error)
    else:
        print(response.body)

def func():
    url_list = [
        ‘http://www.baidu.com‘,
        ‘http://www.bing.com‘,
    ]
    for url in url_list:
        print(url)
        http_client = AsyncHTTPClient()
        http_client.fetch(HTTPRequest(url), handle_response)

ioloop.IOLoop.current().add_callback(func)
ioloop.IOLoop.current().start()

#发现上例在所有任务都完毕后也不能正常结束,为了解决该问题,让我们来加上计数器
from tornado.httpclient import AsyncHTTPClient
from tornado.httpclient import HTTPRequest
from tornado import ioloop

count=0

def handle_response(response):
    """
    处理返回值内容(需要维护计数器,来停止IO循环),调用 ioloop.IOLoop.current().stop()
    :param response:
    :return:
    """
    if response.error:
        print("Error:", response.error)
    else:
        print(len(response.body))

    global count
    count-=1 #完成一次回调,计数减1
    if count == 0:
        ioloop.IOLoop.current().stop() 

def func():
    url_list = [
        ‘http://www.baidu.com‘,
        ‘http://www.bing.com‘,
    ]

    global count
    for url in url_list:
        print(url)
        http_client = AsyncHTTPClient()
        http_client.fetch(HTTPRequest(url), handle_response)
        count+=1 #计数加1

ioloop.IOLoop.current().add_callback(func)
ioloop.IOLoop.current().start()

Tornado

Tornado

原文地址:https://www.cnblogs.com/ouyang99-/p/11108186.html

时间: 2024-10-29 02:09:33

如何提升爬虫的性能的相关文章

如何提升爬虫性能相关的知识点

如何提升爬虫性能相关的知识点 爬虫的本质是伪造socket客户端与服务端的通信过程,如果我们有多个url待爬取,只用一个线程且采用串行的方式执行,那只能等待爬取一个url结束后才能继续下一个,这样我们就会发现效率非常低. 原因:爬虫是一项IO密集型任务,遇到IO问题就会阻塞,CPU运行就会停滞,直到阻塞结束.那么在CPU等待组合结束的过程中,任务其实是呈现出卡住的状态.但是,如果在单线程下进行N个任务且都是纯计算的任务的话,那么该线程对cpu的利用率仍然会很高,所以单线程下串行多个计算密集型任务

jQuery 做好七件事帮你提升jQuery的性能

1. Append Outside of Loops 凡是触及到DOM都是有代价的.如果你向DOM当中附加大量的元素,你会想一次性将它们全部附加进来,而不是分多次进行.当在循环当中附加元素就会产生一个常见的问题. 1 $.each( myArray, function( i, item ) { 2 3 var newListItem = "<li>" + item + "</li>"; 4 5 $( "#ballers"

采用表达式树提升属性访问性能

项目背景, 采用贫血模式, 但希望在使用业务实体机业务规则上的数据属性,使用同一规则. 比如:在页面中, “RS_Department.Code" , "Department.Code"都可以正常访问. 业务实体类 直接使用Linq to Sql 自动生成的代码,跟数据库表一一对应. 如:RS_Requisition, RS_Department 业务规则类 实现数据库增删改查,扩展属性,其他业务规则等. public class Requisition : BLLTable

psutil 是因为该包能提升 memory_profiler 的性能

python 性能分析入门指南 一点号数据玩家昨天 限时干货下载:添加微信公众号"数据玩家「fbigdata」" 回复[7]免费获取[完整数据分析资料!(包括SPSS.SAS.SQL.EXCEL.Project)!] 英文:yexiaobai 译文:yexiaobai 虽然并非你编写的每个 Python 程序都要求一个严格的性能分析,但是让人放心的是,当问题发生的时候,Python 生态圈有各种各样的工具可以处理这类问题. 用 time 粗粒度的计算时间 $time pythonyou

如何从请求、传输、渲染3个方面提升Web前端性能

什么是WEB前端呢?就是用户电脑的浏览器所做的一切事情.我们来看看用户访问网站,浏览器都做了哪些事情: 输入网址 –> 解析域名 -> 请求页面 -> 解析页面并发送页面中的资源请求 -> 渲染资源 -> 输出页面 -> 监听用户操作 -> 重新渲染. 通过上面的路径可以看出浏览器分为请求.传输.渲染三部分来实现用户的访问,本文就从这三个部分来浅析如何提升WEB前端性能. 请求浏览器为了减少请求传输,实现了自己的缓存机制.浏览器缓存就是把一个已经请求过的Web资源

【转帖】AMD Zen 3处理器IPC性能提升17% 浮点性能大涨50%

AMD Zen 3处理器IPC性能提升17% 浮点性能大涨50% https://www.cnbeta.com/articles/tech/925543.htm AMD YES 下个月初发布7nm锐龙APU及移动版锐龙4000之后,AMD在7nm Zen2架构上就算是功德圆满了,剩下的就要全力以赴2020年要发布的7nm Zen3处理器了.最新消息对Zen3的性能提升非常乐观,认为浮点性能大涨50%,推动平均IPC性能提升17%,远超之前的预期. 访问购买页面: AMD旗舰店 目前我们能知道的就

爬虫必备—性能相关(异步非阻塞)

在编写爬虫时,性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待,从而使得请求整体变慢. 1. 同步执行 1 import requests 2 3 def fetch_async(url): 4 response = requests.get(url) 5 return response 6 7 8 url_list = ['http://www.github.com', 'http://www.bing.com'] 9 10 for url in url_list:

提升HTML5的性能体验系列之五 webview启动速度优化及事件顺序解析

webview加载时有5个事件.触发顺序为loading.titleUpdate.rendering.rendered.loaded.webview开始载入页面时触发loading,载入过程中如果<title>节点已经解析并赋予新值,触发titleUpdate,页面开始渲染,触发rendering,页面渲染完毕,触发rendered,页面载入完毕触发loaded. loaded常用于判断页面是否载入完毕,载入完毕才显示新页面.但有时页面内容很长时,全部载入完毕比较慢,导致显示新窗体比较慢.为了

提升HTML5的性能体验系列之三 流畅下拉刷新和上拉

下拉刷新 为实现下拉刷新功能,大多H5框架都是通过DIV模拟下拉回弹动画,在低端android手机(Android4.4以下)上,DIV动画经常出现卡顿现象(特别是图文列表的情况).解决方案还是webview. 既然拉div卡,那就不拉div,改拉webview.webview的拉动是原生的,回弹效果也是原生的,体验与原生一致.思路是在父页面写titlebar,titlebar下面10像素左右写一个"下拉可刷新".然后append一个子webview,并设置为可下拉.那么在把子webv