TCP怎么保证证包有序传输的,TCP的慢启动,拥塞避免,快速重传,快速恢复

TCP提供了最可靠的数据传输,它给发送的每个数据包做顺序化(这看起来非常烦琐),然而,如果TCP没有这样烦琐的操作,那么,可能会造成更多的麻烦。如造成数据包的重传、顺序的颠倒甚至造成数据包的丢失。 那么,TCP具体是通过怎样的方式来保证数据的顺序化传输呢?

主机每次发送数据时,TCP就给每个数据包分配一个序列号并且在一个特定的时间内等待接收主机对分配的这个序列号进行确认,如果发送主机在一个特定时间内没有收到接收主机的确认,则发送主机会重传此数据包。接收主机利用序列号对接收的数据进行确认,以便检测对方发送的数据是否有丢失或者乱序等,接收主机一旦收到已经顺序化的数据,它就将这些数据按正确的顺序重组成数据流并传递到高层进行处理。

具体步骤如下:

(1)为了保证数据包的可靠传递,发送方必须把已发送的数据包保留在缓冲区;

(2)并为每个已发送的数据包启动一个超时定时器;

(3)如在定时器超时之前收到了对方发来的应答信息(可能是对本包的应答,也可以是对本包后续包的应答),则释放该数据包占用的缓冲区;

(4)否则,重传该数据包,直到收到应答或重传次数超过规定的最大次数为止。

(5)接收方收到数据包后,先进行CRC循环冗余校验(Cyclic Redundancy Check, CRC)校验,如果正确则把数据交给上层协议,然后给发送方发送一个累计应答包,表明该数据已收到,如果接收方正好也有数据要发给发送方,应答包也可方在数据包中捎带过去。

为了防止网络的拥塞现象,TCP提出了一系列的拥塞控制机制。最初由V. Jacobson在1988年的论文中提出的TCP的拥塞控制由“慢启动(Slow start)”和“拥塞避免(Congestion avoidance)”组成,后来TCP Reno版本中又针对性的加入了“快速重传(Fast retransmit)”、“快速恢复(Fast Recovery)”算法,再后来在TCP NewReno中又对“快速恢复”算法进行了改进,近些年又出现了选择性应答( selective acknowledgement,SACK)算法,还有其他方面的大大小小的改进,成为网络研究的一个热点。

TCP的拥塞控制主要原理依赖于一个拥塞窗口(cwnd)来控制,在之前我们还讨论过TCP还有一个对端通告的接收窗口(rwnd)用于流量控制。窗口值的大小就代表能够发送出去的但还没有收到ACK(Acknowledgement确认字符)的最大数据报文段,显然窗口越大那么数据发送的速度也就越快,但是也有越可能使得网络出现拥塞,如果窗口值为1,那么就简化为一个停等协议,每发送一个数据,都要等到对方的确认才能发送第二个数据包,显然数据传输效率低下。TCP的拥塞控制算法就是要在这两者之间权衡,选取最好的cwnd值,从而使得网络吞吐量最大化且不产生拥塞。

由于需要考虑拥塞控制和流量控制两个方面的内容,因此TCP的真正的发送窗口=min(rwnd, cwnd)。但是rwnd是由对端确定的,网络环境对其没有影响,所以在考虑拥塞的时候我们一般不考虑rwnd的值,我们暂时只讨论如何确定cwnd值的大小。关于cwnd的单位,在TCP中是以字节来做单位的,我们假设TCP每次传输都是按照MSS大小来发送数据的,因此你可以认为cwnd按照数据包个数来做单位也可以理解,所以有时我们说cwnd增加1也就是相当于字节数增加1个MSS大小。

慢启动:最初的TCP在连接建立成功后会向网络中发送大量的数据包,这样很容易导致网络中路由器缓存空间耗尽,从而发生拥塞。因此新建立的连接不能够一开始就大量发送数据包,而只能根据网络情况逐步增加每次发送的数据量,以避免上述现象的发生。具体来说,当新建连接时,cwnd初始化为1个最大报文段(MSS)大小,发送端开始按照拥塞窗口大小发送数据,每当有一个报文段被确认,cwnd就增加1个MSS大小。这样cwnd的值就随着网络往返时间(Round Trip Time,RTT)呈指数级增长,事实上,慢启动的速度一点也不慢,只是它的起点比较低一点而已。我们可以简单计算下:

开始 ---> cwnd = 1

经过1个RTT后 ---> cwnd = 2*1 = 2

经过2个RTT后 ---> cwnd = 2*2= 4

经过3个RTT后 ---> cwnd = 4*2 = 8

如果带宽为W,那么经过RTT*log2W时间就可以占满带宽。

拥塞避免:从慢启动可以看到,cwnd可以很快的增长上来,从而最大程度利用网络带宽资源,但是cwnd不能一直这样无限增长下去,一定需要某个限制。TCP使用了一个叫慢启动门限(ssthresh)的变量,当cwnd超过该值后,慢启动过程结束,进入拥塞避免阶段。对于大多数TCP实现来说,ssthresh的值是65536(同样以字节计算)。拥塞避免的主要思想是加法增大,也就是cwnd的值不再指数级往上升,开始加法增加。此时当窗口中所有的报文段都被确认时,cwnd的大小加1,cwnd的值就随着RTT开始线性增加,这样就可以避免增长过快导致网络拥塞,慢慢的增加调整到网络的最佳值。

上面讨论的两个机制都是没有检测到拥塞的情况下的行为,那么当发现拥塞了cwnd又该怎样去调整呢?

首先来看TCP是如何确定网络进入了拥塞状态的,TCP认为网络拥塞的主要依据是它重传了一个报文段。上面提到过,TCP对每一个报文段都有一个定时器,称为重传定时器(RTO),当RTO超时且还没有得到数据确认,那么TCP就会对该报文段进行重传,当发生超时时,那么出现拥塞的可能性就很大,某个报文段可能在网络中某处丢失,并且后续的报文段也没有了消息,在这种情况下,TCP反应比较“强烈”:

1.把ssthresh降低为cwnd值的一半

2.把cwnd重新设置为1

3.重新进入慢启动过程。

从整体上来讲,TCP拥塞控制窗口变化的原则是AIMD原则,即加法增大、乘法减小。可以看出TCP的该原则可以较好地保证流之间的公平性,因为一旦出现丢包,那么立即减半退避,可以给其他新建的流留有足够的空间,从而保证整个的公平性。

其实TCP还有一种情况会进行重传:那就是收到3个相同的ACK。TCP在收到乱序到达包时就会立即发送ACK,TCP利用3个相同的ACK来判定数据包的丢失,此时进行快速重传,快速重传做的事情有:

1.把ssthresh设置为cwnd的一半

2.把cwnd再设置为ssthresh的值(具体实现有些为ssthresh+3)

3.重新进入拥塞避免阶段。

后来的“快速恢复”算法是在上述的“快速重传”算法后添加的,当收到3个重复ACK时,TCP最后进入的不是拥塞避免阶段,而是快速恢复阶段。快速重传和快速恢复算法一般同时使用。快速恢复的思想是“数据包守恒”原则,即同一个时刻在网络中的数据包数量是恒定的,只有当“老”数据包离开了网络后,才能向网络中发送一个“新”的数据包,如果发送方收到一个重复的ACK,那么根据TCP的ACK机制就表明有一个数据包离开了网络,于是cwnd加1。如果能够严格按照该原则那么网络中很少会发生拥塞,事实上拥塞控制的目的也就在修正违反该原则的地方。

具体来说快速恢复的主要步骤是:

1.当收到3个重复ACK时,把ssthresh设置为cwnd的一半,把cwnd设置为ssthresh的值加3,然后重传丢失的报文段,加3的原因是因为收到3个重复的ACK,表明有3个“老”的数据包离开了网络。

2.再收到重复的ACK时,拥塞窗口增加1。

3.当收到新的数据包的ACK时,把cwnd设置为第一步中的ssthresh的值。原因是因为该ACK确认了新的数据,说明从重复ACK时的数据都已收到,该恢复过程已经结束,可以回到恢复之前的状态了,也即再次进入拥塞避免状态。

快速重传算法首次出现在4.3BSD的Tahoe版本,快速恢复首次出现在4.3BSD的Reno版本,也称之为Reno版的TCP拥塞控制算法。

可以看出Reno的快速重传算法是针对一个包的重传情况的,然而在实际中,一个重传超时可能导致许多的数据包的重传,因此当多个数据包从一个数据窗口中丢失时并且触发快速重传和快速恢复算法时,问题就产生了。因此NewReno出现了,它在Reno快速恢复的基础上稍加了修改,可以恢复一个窗口内多个包丢失的情况。具体来讲就是:Reno在收到一个新的数据的ACK时就退出了快速恢复状态了,而NewReno需要收到该窗口内所有数据包的确认后才会退出快速恢复状态,从而更一步提高吞吐量。

SACK就是改变TCP的确认机制,最初的TCP只确认当前已连续收到的数据,SACK则把乱序等信息会全部告诉对方,从而减少数据发送方重传的盲目性。比如说序号1,2,3,5,7的数据收到了,那么普通的ACK只会确认序列号4,而SACK会把当前的5,7已经收到的信息在SACK选项里面告知对端,从而提高性能,当使用SACK的时候,NewReno算法可以不使用,因为SACK本身携带的信息就可以使得发送方有足够的信息来知道需要重传哪些包,而不需要重传哪些包。

本人博客:TCP怎么保证证包有序传输的,TCP的慢启动,拥塞避免,快速重传,快速恢复

原文地址:https://www.cnblogs.com/jianqingwang/p/11450992.html

时间: 2024-10-07 19:03:28

TCP怎么保证证包有序传输的,TCP的慢启动,拥塞避免,快速重传,快速恢复的相关文章

抓包分析传输层TCP协议通信(2)

body { font-family: 微软雅黑,"Microsoft YaHei", Georgia,Helvetica,Arial,sans-serif,宋体, PMingLiU,serif; font-size: 10.5pt; line-height: 1.5; } html, body { } h1 { font-size:1.5em; font-weight:bold; } h2 { font-size:1.4em; font-weight:bold; } h3 { fon

抓包分析传输层TCP协议通信(1)

body { font-family: 微软雅黑,"Microsoft YaHei", Georgia,Helvetica,Arial,sans-serif,宋体, PMingLiU,serif; font-size: 10.5pt; line-height: 1.5; } html, body { } h1 { font-size:1.5em; font-weight:bold; } h2 { font-size:1.4em; font-weight:bold; } h3 { fon

通过packetdrill构造的包序列理解TCP快速重传机制

TCP的逻辑是极其复杂的,其学习曲线虽然很平缓但其每一步都是异常艰难,好在这些都是体力活,只要肯花时间也就不在话下了.想彻底理解一个TCP的机制,有个四部曲:1.读与其相关的RFC:2.看Linux协议栈的TCP实现:3.通过抓包以及其它工具来确认事实就是如此:4.解决一个与之相关的网络问题.经历了以上四步骤,相信任何人都可以在相关领域内稍微装逼一把了...        本文的内容是TCP快速重传机制,但是与其它文章不同的是,本文并不剖析源码实现,也不翻译RFC,更不是原理性介绍,而是通过一个

TCP如何保证可靠传输

一.综述 1.确认和重传:接收方收到报文就会确认,发送方发送一段时间后没有收到确认就重传. 2.数据校验 3.数据合理分片和排序: UDP:IP数据报大于1500字节,大于MTU.这个时候发送方IP层就需要分片(fragmentation).把数据报分成若干片,使每一片都小于MTU.而接收方IP层则需要进行数据报的重组.这样就会多做许多事情,而更严重的是,由于UDP的特性,当某一片数据传送中丢失时,接收方便无法重组数据报.将导致丢弃整个UDP数据报. tcp会按MTU合理分片,接收方会缓存未按序

关于TCP封包、粘包、半包

关于Tcp封包 很多朋友已经对此作了不少研究,也花费不少心血编写了实现代码和blog文档.当然也充斥着一些各式的评论,自己看了一下,总结一些心得. 首先我们学习一下这些朋友的心得,他们是: http://blog.csdn.net/stamhe/article/details/4569530 http://www.cppblog.com/tx7do/archive/2011/05/04/145699.html //……………… 当然还有太多,很多东西粘来粘区也不知道到底是谁的原作,J 看这些朋友

【精】TCP/IP协议简介(四) 之 传输层UDP&TCP

传输层:UDP 协议 一.传输层协议 从之前介绍的网络层协议来看,通信的两端是两台主机,IP 数据报首部就标明了这两台主机的 IP 地址.但是从传输层来看,是发送方主机中的一个进程与接收方主机中的一个进程在交换数据,因此,严格地讲,通信双方不是主机,而是主机中的进程. 主机中常常有多个应用进程同时在与外部通信(比如你的浏览器和 QQ 在同时运行),下图中,A 主机的 AP1 进程在于 B 主机的 AP3 进程通信,同时主机 A 的 AP2 进程也在与 B 主机的 AP4 进程通信. 两个主机的传

TCP 三次握手四次挥手, ack 报文的大小.tcp和udp的不同之处、tcp如何保证可靠的、tcp滑动窗口解释

一.TCP三次握手和四次挥手,ACK报文的大小 首先连接需要三次握手,释放连接需要四次挥手 然后看一下连接的具体请求: [注意]中断连接端可以是Client端,也可以是Server端. [注意] 在TIME_WAIT状态中,如果TCP client端最后一次发送的ACK丢失了,它将重新发送.TIME_WAIT状态中所需要的时间是依赖于实现方法的.典型的值为30秒.1分钟和2分钟.等待之后连接正式关闭,并且所有的资源(包括端口号)都被释放. [问题1]为什么连接的时候是三次握手,关闭的时候却是四次

DNS同时占用UDP和TCP端口53——传输数据超过512时候用tcp,DNS服务器可以配置仅支持UDP查询包

DNS同时占用UDP和TCP端口53是公认的,这种单个应用协议同时使用两种传输协议的情况在TCP/IP栈也算是个另类.但很少有人知道DNS分别在什么情况下使用这两种协议. 先简单介绍下TCP与UDP.     TCP是一种面向连接的协议,提供可靠的数据传输,一般服务质量要求比较高的情况,使用这个协议.UDP---用户数据报协议,是一种无连接的传输层协议,提供面向事务的简单不可靠信息传送服务. TCP与UDP的区别:     UDP和TCP协议的主要区别是两者在如何实现信息的可靠传递方面不同.TC

TCP和UDP数据包大小限制

1.概述 首先要看TCP/IP协议,涉及到四层:链路层,网络层,传输层,应用层. 其中以太网(Ethernet)的数据帧在链路层 IP包在网络层 TCP或UDP包在传输层 TCP或UDP中的数据(Data)在应用层 它们的关系是 数据帧{IP包{TCP或UDP包{Data}}}     不同的协议层对数据包有不同的称谓,在传输层叫做段(segment),在网络层叫做数据报(datagram),在链路层叫做帧(frame).数据封装成帧后发到传输介质上,到达目的主机后每层协议再剥掉相应的首部,最后