UOJ310. 【UNR #2】黎明前的巧克力 [FWT]

UOJ

思路

显然可以转化一下,变成统计异或起来等于0的集合个数,这样一个集合的贡献是\(2^{|S|}\)。

考虑朴素的\(dp_{i,j}\)表示前\(i\)个数凑出了\(j\)的方案数,发现这其实就是一堆多项式用异或卷积搞起来。第\(i\)个多项式是\(1+2x^{a_i}\)。

对\(1+2x^{a}\)FWT一下,发现结果就只有-13。为什么?根据FWT的理论,\(a_i\)会对\(FWT(a)_j\)产生\(a_i\times (-1)^{\text{bitcnt}[i\&j]}\)的贡献。

我们就是要求出最后这一堆东西乘在一起是什么,也就是对于每一位求出这里有几个-1,有几个3。

这个怎么做?脑洞一下,把所有多项式加在一起FWT,设有\(x\)个-1,那么就有方程\(-x+3(n-x)=f_i\),就可以解出来了。

最后再FWT回去,就做完了。

(这个解方程咋想到的啊qwq)

代码

最后减1不取模你人就没了qwq

#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
    using namespace std;
    #define pii pair<int,int>
    #define fir first
    #define sec second
    #define MP make_pair
    #define rep(i,x,y) for (int i=(x);i<=(y);i++)
    #define drep(i,x,y) for (int i=(x);i>=(y);i--)
    #define go(x) for (int i=head[x];i;i=edge[i].nxt)
    #define templ template<typename T>
    #define sz 1100000
    #define mod 998244353ll
    typedef long long ll;
    typedef double db;
    mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
    templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
    templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
    templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
    templ inline void read(T& t)
    {
        t=0;char f=0,ch=getchar();double d=0.1;
        while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
        while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
        if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
        t=(f?-t:t);
    }
    template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
    char __sr[1<<21],__z[20];int __C=-1,__zz=0;
    inline void Ot(){fwrite(__sr,1,__C+1,stdout),__C=-1;}
    inline void print(register int x)
    {
        if(__C>1<<20)Ot();if(x<0)__sr[++__C]='-',x=-x;
        while(__z[++__zz]=x%10+48,x/=10);
        while(__sr[++__C]=__z[__zz],--__zz);__sr[++__C]='\n';
    }
    void file()
    {
        #ifdef NTFOrz
        freopen("a.in","r",stdin);
        #endif
    }
    inline void chktime()
    {
        #ifndef ONLINE_JUDGE
        cout<<(clock()-t)/1000.0<<'\n';
        #endif
    }
    #ifdef mod
    ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
    ll inv(ll x){return ksm(x,mod-2);}
    #else
    ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
    #endif
//  inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;

int n;
int a[sz];

int f[sz];
ll g[sz];
void FWT(int *a,int n)
{
    int N=1<<n,x,y;
    rep(i,0,n-1)
        for (int mid=1<<i,j=0;j<N;j+=mid<<1)
            rep(k,0,mid-1)
                x=a[j+k],y=a[j+k+mid],a[j+k]=x+y,a[j+k+mid]=x-y;
}
ll I=inv(2);
void iFWT(ll *a,int n)
{
    int N=1<<n;ll x,y;
    rep(i,0,n-1)
        for (int mid=1<<i,j=0;j<N;j+=mid<<1)
            rep(k,0,mid-1)
                x=a[j+k],y=a[j+k+mid],a[j+k]=(x+y)*I%mod,a[j+k+mid]=(x-y+mod)*I%mod;
}

int main()
{
    file();
    read(n);
    rep(i,1,n) read(a[i]),++f[0],f[a[i]]+=2;
    FWT(f,20);
    int x;
    rep(i,0,(1<<20)-1) x=(3*n-f[i])/4,g[i]=ksm(mod-1,x)*ksm(3,n-x)%mod;
    iFWT(g,20);
    printf("%lld\n",(g[0]-1+mod)%mod);
    return 0;
}

原文地址:https://www.cnblogs.com/p-b-p-b/p/11403131.html

时间: 2024-08-25 09:00:17

UOJ310. 【UNR #2】黎明前的巧克力 [FWT]的相关文章

UOJ #310 黎明前的巧克力 (FWT)

题目传送门 题目大意:给你一个序列,定义一个子序列的权值表示子序列中元素的异或和,现在让你选出两个互不相交的子序列,求选出的这两个子序列权值相等的方案数,n,a_{i}\leq 10^{6} 这是一道考察对FWT算法理解的好题.然而我并不会 思路来自出题人的题解 假设权值最大值为$m$ 暴力怎么搞?背包$DP$一下 定义$f(i,j)$表示现在遍历到了第$i$个元素,选出的两个子序列异或和为$j$的方案数,容易得到方程: $f(i,j)=f(i-1,j)+2*f(i-1,j\;xor\;a_{i

uoj310. 【UNR #2】黎明前的巧克力

题目描述: uoj 题解: WTF. 看题解看了一个小时才看明白. 首先有状态$f[i][j]$表示前$i$个东西两人取,最后两人异或和为$j$的有多少方案. 转移为$f[i][j]=f[i-1][j]+2*f[i-1][j \oplus a[i]]$. 显然跑FWT做异或卷积(显然会T). 发现卷积中每次卷的是{1,0,0,……,0,2,0……}这样一个东西. 打表发现FWT后每一项是-1或3. 其实很好解释,从贡献的角度讲,0位的贡献都是1,而$a[i]$位的贡献是2或-2,所以是3或-1.

@uoj - [email&#160;protected] 【UNR #2】黎明前的巧克力

目录 @[email protected] @[email protected] @accepted [email protected] @[email protected] @[email protected] Evan 和 Lyra 都是聪明可爱的孩子,两年前,Evan 开始为一个被称为UOJ的神秘的OI组织工作,在 Evan 与其他小伙伴的努力下,UOJ不仅成了OI界原创比赛的典范,更是因UR这一反人类难度的存在而举世闻名.然而今年,随着 Evan 前往世界彼岸,UOJ一天天减少着他的活力

UOJ 310 黎明前的巧克力(FWT)

[题目链接] http://uoj.ac/problem/310 [题目大意] 给出一个数集,A从中选择一些数,B从中选择一些数,不能同时不选 要求两者选择的数异或和为0,问方案数 [题解] 题目等价于选取一个非空且xor为0的集合并将其拆分为两个子集的方案数 用dp表示xor为j的方案数,易得dp方程dp[i][j]=dp[i-1][j]+2*dp[i-1][j^a[i]] 该式等价于dp数组与只有两个元素有值的g[0]=1,g[a[i]]=2的数组做卷积运算 对g数组进行反演可以发现每次卷积

uoj#310. 【UNR #2】黎明前的巧克力

题目描述 题解 考虑到选出的两个集合的异或值为 $0$ ,所以我们可以看做找出集合,其异或值为 $0$ ,然后如果这个集合大小是 $x$ ,对答案的贡献就是 $2^x$ 所以我们考虑每个 $i$ 对应一个多项式 $(1+2x^{a_i})$ ,只要我们把多项式乘起来即可 我们考虑 $fwt$ 过程中 $i$ 位置上的数对 $j$ 位置的贡献是数值乘上 $(-1)^{popcount(i\And j)}$ ,不难发现每个多项式 $fwt$ 后数值要么是 $-1$ ,要么是 $3$ 所以我们可以把这

无数创业者倒在黎明前的黑夜,美业O2O进入倒计时

对于O2O这个东东,业内看法存在诸多不一致,有的人甚至认为O2O就是个伪命题.其实也不能完全怪这么多人会存在这种看法,因为他们见到太多失败的事例了.但是任何行业都是如此,大多数的创业者都注定会倒在黎明前的黑夜,只不过O2O涉及到的行业实在是太多,几乎任何一个传统行业在互联网+的浪潮下,都跟O2O挂上了钩,失败者自然比比皆是.无形之中,O2O也就成为了人人喊打的过街鼠. 但是,细心的你也许会发现,最终每一个垂直细分领域都涌现出了少数几个优秀的O2O平台,他们将成为最后的大赢家.美业O2O这个行业也

开源搜索 Iveely Search Engine 0.6.0 发布 -- 黎明前的娇嫩

快两年了,Iveely Search Engine已经走过了5个版本的岁月,虽出生“贫寒”,没有任何开源基金会的支持,没有优秀的“干爹.干妈”,它凭着它的爱好者的支持,0.6.0终于破壳而出,7年前,我开始研究搜索引擎,开始构思我的想法,今天的0.6.0是目前最接近我最初想法的一个版本.简单的说,搜索引擎会让机器人越来越聪明,当然源码依然在这里 (安装部署). 在Iveely Search Engine 0.6.0里,我们为大家带来了什么?新的视野,未来的搜索方式.还记得,我们发布0.1.0的时

黎明前的黑暗---开启机房收费重构

题意:求一个无向图的,去掉两个不同的点后最多有几个连通分量. 思路:枚举每个点,假设去掉该点,然后对图求割点后连通分量数,更新最大的即可.算法相对简单,但是注意几个细节: 1:原图可能不连通. 2:有的连通分量只有一个点,当舍去该点时候,连通分量-1: 复习求割点的好题! #include<iostream> #include<cstdio> #include<vector> using namespace std; int n,m; vector<vector&

倒在黎明前:融资客股市震荡中被强平损失850万

倒在黎明前:融资客股市震荡中被强平损失850万 来源:  2015-07-15 08:37:33 | 我要分享 2233 选股神器 涨停哪里跑 点击详情 >> 倒在黎明前 2015年夏天,中国股市如同搭乘过山车一般,攀上鲜红的暴涨,又冲向暗绿的暴跌,人人称之为“疯牛”. 7月上旬,大盘硬生生从绿色的深渊中拉起,一场不见硝烟的金融战暂告停歇. 这场股市震荡也是投资者与自我的“大战”.7月8日,一再期望撑下去的融资客范伟勇“弹尽粮绝”,不得不接受“强制平仓”的结果. 有人骂他活该,有人为他惋惜,也