P4213【模板】杜教筛(Sum)

思路:杜教筛

提交:\(2\)次

错因:\(\varphi(i)\)的前缀和用\(int\)存的

题解:

对于一类筛积性函数前缀和的问题,杜教筛可以以低于线性的时间复杂度来解决问题。
先要构造\(h=f*g\),并且\(h\)的前缀和易求,\(g\)的区间和易求。
具体地:
\[\sum_{i=1}^{n}h(i)=\sum_{i=1}^{n}\sum_{d|i}g(d)\cdot f(\frac{i}{d})\] \[\sum_{i=1}^{n}h(i)=\sum_{d=1}^{n}g(d)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}f({i})\]
设\(S(n)\)表示\(\sum_{i=1}^{n}f(i)\)
\[\sum_{i=1}^{n}h(i)=\sum_{d=1}^{n}g(d)\cdot S(\lfloor\frac{n}{d}\rfloor)\]
\[g(1)\cdot S(n)=\sum_{i=1}^{n}h(i)-\sum_{d=2}^{n}g(d)\cdot S(\lfloor\frac{n}{d}\rfloor)\]
当我们对后面的式子进行整除分块时,求\(S(n)\)的复杂度为\(O(n^{\frac{2}{3}})\)
所以主要就是如何构造\(h\)和\(g\)
好吧直接说了:
\(\epsilon=\mu\cdot I\)
\(id=\varphi\cdot I\)

对于\(f(n)=\varphi(n)\cdot n^k=\varphi(n^{k+1})\)的一类方法:
\(id^{k+1}=f\cdot id^k\)

#include<cstdio>
#include<iostream>
#include<unordered_map>
#include<cmath>
#define ll long long
#define R register int
using namespace std;
namespace Luitaryi {
template<class I> inline I g(I& x) { x=0; register I f=1;
  register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
  do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*=f;
} const int N=5000000,Inf=2147483647;
int T,n,cnt,p[N/4],mu[N+10];
ll phi[N+10];
bool v[N+10];
inline void PRE() { phi[1]=mu[1]=1;
  for(R i=2;i<=N;++i) {
    if(!v[i]) p[++cnt]=i,phi[i]=i-1,mu[i]=-1;
    for(R j=1;j<=cnt&&i*p[j]<=N;++j) {
      v[i*p[j]]=true;
      if(i%p[j]==0) {
        mu[i*p[j]]=0;
        phi[i*p[j]]=phi[i]*p[j]; break;
      } mu[i*p[j]]=-mu[i];
      phi[i*p[j]]=phi[i]*(p[j]-1);
    }
  }
  for(R i=1;i<=N;++i) mu[i]+=mu[i-1];
  for(R i=1;i<=N;++i) phi[i]+=phi[i-1];
}
unordered_map<int,int> memmu;
unordered_map<int,ll> memphi;
inline ll s_phi(int n) {
  if(n<=N) return phi[n];
  if(memphi.count(n)) return memphi[n];
  register ll ans=0;
  for(R l=2,r;r<Inf&&l<=n;l=r+1) {
    r=n/(n/l),ans+=(r-l+1)*s_phi(n/l);
  } return memphi[n]=1llu*n*(n+1ll)/2ll-ans;
}
inline int s_mu(int n) {
  if(n<=N) return mu[n];
  if(memmu.count(n)) return memmu[n];
  register ll ans=0;
  for(R l=2,r;r<Inf&&l<=n;l=r+1) {
    r=n/(n/l),ans+=(r-l+1)*s_mu(n/l);
  } return memmu[n]=1ll-ans;
}
inline void main() {
  PRE(); g(T); while(T--) {
    g(n); printf("%lld %d\n",s_phi(n),s_mu(n));
  }
}
} signed main() {Luitaryi::main(); return 0;}


2019.08.23
77

原文地址:https://www.cnblogs.com/Jackpei/p/11403189.html

时间: 2024-10-09 07:20:59

P4213【模板】杜教筛(Sum)的相关文章

luoguP4213 [模板]杜教筛

https://www.luogu.org/problemnew/show/P4213 同 bzoj3944 考虑用杜教筛求出莫比乌斯函数前缀和,第二问随便过,第一问用莫比乌斯反演来做,中间的整除分块里的莫比乌斯前缀和刚好用第二问来做 杜教筛的时候先线性筛出前 N 个数的莫比乌斯函数前缀和,其余的用 map 记忆化搜索,实测 N 取 3670000 最佳(其实我只测了3次) #include <bits/stdc++.h> using namespace std; typedef unsign

[模板]杜教筛

用途 比线性更快($O(n^{\frac{2}{3}})$)地求积性函数的前缀和 前置知识:狄利克雷卷积 形如$h(n)=\sum\limits_{d|n}f(d)g(\frac{n}{d})$,则称$h(n)=f(x)*g(x)$ 如果f和g都是积性函数,则卷出的h也是积性函数 可以证明,狄利克雷卷积满足交换律.结合律.分配律 比较重要的卷积式子(抄的..): $$\mu*1=\varepsilon , \varepsilon(n)=[n=1]$$ $$\varphi*1=id , id(n)

P4213 【模板】杜教筛(Sum)

\(\color{#0066ff}{题 目 描 述}\) 给定一个正整数\(N(N\le2^{31}-1)\) 求 \(\begin{aligned} ans_1=\sum_{i=1}^n\varphi(i) \end{aligned}\) \(\begin{aligned} ans_2=\sum_{i=1}^n \mu(i) \end{aligned}\) \(\color{#0066ff}{输 入 格 式}\) 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N

洛谷P4213 Sum(杜教筛)

题目描述 给定一个正整数N(N\le2^{31}-1)N(N≤231−1) 求ans_1=\sum_{i=1}^n\phi(i),ans_2=\sum_{i=1}^n \mu(i)ans1?=∑i=1n??(i),ans2?=∑i=1n?μ(i) 输入输出格式 输入格式: 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 输出格式: 一共T行,每行两个用空格分隔的数ans1,ans2 输入输出样例 输入样例#1: 复制 6 1 2 8 13 30 2

【模板】杜教筛(Sum)

传送门 Description 给定一个正整数\(N(N\le2^{31}-1)\) 求 \[ans1=\sum_{i=1}^n \varphi(i)\] \[ans_2=\sum_{i=1}^n \mu(i)\] Solution 总算是写了一个不会\(TLE\)的杜教筛,不想用\(map\),因此上了一个很丑的\(Hash\)-- Code #include<bits/stdc++.h> #define ll long long #define max(a,b) ((a)>(b)?(

3944: Sum(杜教筛)

3944: Sum Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4930  Solved: 1313[Submit][Status][Discuss] Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1,ans2 Sample Input 6 1 2 8 13 30 2333 Sample Output 1 1

●杜教筛入门(BZOJ 3944 Sum)

入门杜教筛啦. http://blog.csdn.net/skywalkert/article/details/50500009(好文!) 可以在$O(N^{\frac{2}{3}})或O(N^{\frac{3}{4}})$的复杂度内解决求某些数论函数f(n)(或f的前缀和S(n)$)的值. 先来看看原理是什么.(接下来推导如何求数论函数f(n)的前缀和S(n)) 现在有两个数论函数$f( )和g( )$ (同时定义f的前缀和函数$S(n)=\sum_{i=1}^{n}f(i)$) 有狄利克雷乘

[模板][P3377]杜教筛

Description: 求 $ \sum_{i=1}^n \phi(i) ,\sum_{i=1}^n \mu(i)$ Hint: \(n<=10^{10}?\) Solution: 考虑积性函数 \(f,g,h?\) 及其前缀和 \(F,G,H?\) 其中 \(h=f*g?\) 首先 \(H(x)=\sum_{n=1}^xh(n)\) \(=\sum_{n=1}^x \sum_{d|n} f(d) g(\frac{n}{d})\) 枚举倍数转枚举因数 \(=\sum_{k=1}^x \sum_

bzoj 3944 Sum —— 杜教筛

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3944 杜教筛入门题! 看博客:https://www.cnblogs.com/zjp-shadow/p/8491542.html 写法模仿其他博客的,但很慢啊... 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<ma