深度学习调参策略(一)

经常会被问到你用深度学习训练模型时怎么样改善你的结果呢?然后每次都懵逼了,一是自己懂的不多,二是实验的不多,三是记性不行忘记了。所以写这篇博客,记录下别人以及自己的一些经验。

Ilya Sutskever(Hinton的学生)讲述了有关深度学习的见解及实用建议:

获取数据:确保要有高质量的输入/输出数据集,这个数据集要足够大、具有代表性以及拥有相对清楚的标签。缺乏数据集是很难成功的。

预处理:将数据进行集中是非常重要的,也就是要使数据均值为0,从而使每个维度的每次变动为1。有时,当输入的维度随量级排序变化时,最好使用那个维度的log(1+x)。基本上,重要的是要找到一个0值的可信编码以及自然分界的维度。这样做可使学习工作得更好。情况就是这样的,因为权值是通过公式来更新的:wij中的变化 \propto xidL/dyj(w表示从层x到层y的权值,L是损失函数)。如果x的均值很大(例如100),那么权值的更新将会非常大,并且是相互关联的,这使得学习变得低劣而缓慢。保持0均值和较小的方差是成功的关键因素。

批处理:在如今的计算机上每次只执行一个训练样本是很低效的。反之如果进行的是128个例子的批处理,效率将大幅提高,因为其输出量是非常可观的。事实上使用数量级为1的批处理效果不错,这不仅可获得性能的提升同时可降低过度拟合;不过这有可能会被大型批处理超越。但不要使用过大的批处理,因为有可能导致低效和过多过度拟合。所以我的建议是:根据硬件配置选取适合的批处理规模,量力而为会更加高效。

梯度归一化:根据批处理的大小来拆分梯度。这是一个好主意,因为如果对批处理进行倍增(或倍减),无需改变学习率(无论如何,不要太多)。

学习率计划:从一个正常大小的学习率(LR)开始,朝着终点不断缩小。

1LR的典型取值是0.1,令人惊讶的是,对于大量的神经网络问题来说,0.1是学习率的一个很好的值。通常学习率倾向于更小而非更大。
使用一个验证集——一个不进行训练的训练集子集,来决定何时降低学习率以及何时停止训练(例如当验证集的错误开始增多的时候)。
学习率计划的实践建议:若发现验证集遭遇瓶颈,不妨将LR除以2(或5),然后继续。最终,LR将会变得非常小,这也到了停止训练的时候了。这样做可以确保在验证性能受到损害的时候,你不会拟合(或过度拟合)训练数据。降低LR是很重要的,通过验证集来控制LR是个正确的做法。

但最重要的是要关注学习率。一些研究人员(比如Alex Krizhevsky)使用的方法是,监视更新范数和权值范数之间的比率。比率取值大约为10¯³。如果取值过小,那么学习会变得非常慢;如果取值过大,那么学习将会非常不稳定甚至失败。

权值初始化。关注权值在学习开始时的随机初始化。

如果想偷懒,不妨试试0.02*randn(num_params)。这个范围的值在许多不同的问题上工作得很好。当然,更小(或更大)的值也值得一试。
如果它工作得不好(例如是一个非常规的和/或非常深的神经网络架构),那么需要使用init_scale/sqrt(layer_width)*randn来初始化每个权值矩阵。在这种情况下,init_scale应该设置为0.1或者1,或者类似的值。
对于深度且循环的网络,随机初始化是极其重要的。如果没有处理好,那么它看起来就像没有学习到任何东西。我们知道,一旦条件都设置好了,神经网络就会学习。
一个有趣的故事:多年来,研究人员相信SGD不能训练来自随机初始化的深度神经网络。每次尝试都以失败告终。令人尴尬的是,他们没有成功是因为使用“小的随机权值”来进行初始化,虽然小数值的做法在浅度网络上工作得非常好,但在深度网络上的表现一点也不好。当网络很深时,许多权值矩阵之间会进行乘积,所以不好的结果会被放大。
但如果是浅度网络,SGD可以帮助我们解决该问题。

所以关注初始化是很有必要的。尝试多种不同的初始化,努力就会得到回报。如果网络完全不工作(即没法实施),继续改进随机初始化是正确的选择。

如果正在训练RNN或者LSTM,要对梯度(记得梯度已除以批量大小)范数使用一个硬约束。像15或者5这样的约束在我个人的实验中工作得很好。请将梯度除以批处理大小,再检查一下它的范数是否超过15(或5)。如果超过了,将它缩小到15(或5)。这个小窍门在RNN和LSTM的训练中发挥着巨大作用,不这样做的话,爆炸性的梯度将会导致学习失败,最后不得不使用像1e-6这样微小而无用的学习率。

数值梯度检查:如果没有使用过Theano或者Torch,梯度实现只能亲力亲为了。在实现梯度的时候很容易出错,所以使用数值梯度检查是至关重要的。这样做会让你对自己的代码充满信心。调整超级参数(比如学习率和初始化)是非常有价值的,因此好刀要用在刀刃上。

如果正在使用LSTM同时想在具有大范围依赖的问题上训练它们,那么应该将LSTM遗忘关口的偏差初始化为较大的值。默认状态下,遗忘关口是S型的全部输入,当权值很小时,遗忘关口会被设置为0.5,这只能对部分问题有效。这是对LSTM初始化的一个警示。

数据增加(Data augmentation):使用算法来增加训练实例数量是个有创意的做法。如果是图像,那么应该转换和旋转它们;如果是音频,应该将清晰的部分和所有类型的杂音进行混合处理。数据添加是一门艺术(除非是在处理图像),这需要一定的常识。

dropout:dropout提供了一个简单的方法来提升性能。记得要调整退出率,而在测试时不要忘记关闭dropout,然后对权值求乘积(也就是1-dropout率)。当然,要确保将网络训练得更久一点。不同于普通训练,在进入深入训练之后,验证错误通常会有所增加。dropout网络会随着时间推移而工作得越来越好,所以耐心是关键。

综合(Ensembling)。训练10个神经网络,然后对其预测数据进行平均。该做法虽然简单,但能获得更直接、更可观的性能提升。有人可能会困惑,为什么平均会这么有效?不妨用一个例子来说明:假如两个分类器的错误率为70%,如果其中一个的正确率保持较高,那么平均后的预测会更接近正确结果。这对于可信网络的效果会更加明显,当网络可信时结果是对的,不可信时结果是错的。

(下面几点是上面的简化版)

1:准备数据:务必保证有大量、高质量并且带有干净标签的数据,没有如此的数据,学习是不可能的

2:预处理:这个不多说,就是0均值和1方差化

3:minibatch:建议值128,1最好,但是效率不高,但是千万不要用过大的数值,否则很容易过拟合

4:梯度归一化:其实就是计算出来梯度之后,要除以minibatch的数量。这个不多解释

5:下面主要集中说下学习率

5.1:总的来说是用一个一般的学习率开始,然后逐渐的减小它

5.2:一个建议值是0.1,适用于很多NN的问题,一般倾向于小一点。

5.3:一个对于调度学习率的建议:如果在验证集上性能不再增加就让学习率除以2或者5,然后继续,学习率会一直变得很小,到最后就可以停止训练了。

5.4:很多人用的一个设计学习率的原则就是监测一个比率(每次更新梯度的norm除以当前weight的norm),如果这个比率在10-3附近,如果小于这个值,学习会很慢,如果大于这个值,那么学习很不稳定,由此会带来失败。

6:使用验证集,可以知道什么时候开始降低学习率,和什么时候停止训练。

7:关于对weight初始化的选择的一些建议:

7.1:如果你很懒,直接用0.02*randn(num_params)来初始化,当然别的值你也可以去尝试

7.2:如果上面那个不太好使,那么久依次初始化每一个weight矩阵用init_scale / sqrt(layer_width) * randn,init_scale可以被设置为0.1或者1

7.3:初始化参数对结果的影响至关重要,要引起重视。

7.4:在深度网络中,随机初始化权重,使用SGD的话一般处理的都不好,这是因为初始化的权重太小了。这种情况下对于浅层网络有效,但是当足够深的时候就不行了,因为weight更新的时候,是靠很多weight相乘的,越乘越小,有点类似梯度消失的意思(这句话是我加的)

8:如果训练RNN或者LSTM,务必保证gradient的norm被约束在15或者5(前提还是要先归一化gradient),这一点在RNN和LSTM中很重要。

9:检查下梯度,如果是你自己计算的梯度。

10:如果使用LSTM来解决长时依赖的问题,记得初始化bias的时候要大一点

12:尽可能想办法多的扩增训练数据,如果使用的是图像数据,不妨对图像做一点扭转啊之类的,来扩充数据训练集合。

13:使用dropout

14:评价最终结果的时候,多做几次,然后平均一下他们的结果。

原文地址:https://www.cnblogs.com/mfryf/p/11393656.html

时间: 2024-11-05 18:40:56

深度学习调参策略(一)的相关文章

深度学习调参策略(二)

超参数(Hyper-Parameter)是困扰神经网络训练的问题之一,因为这些参数不可通过常规方法学习获得. 神经网络经典五大超参数: 学习率(Leraning Rate).权值初始化(Weight Initialization).网络层数(Layers) 单层神经元数(Units).正则惩罚项(Regularizer|Normalization) 这五大超参数使得神经网络更像是一门实践课,而不是理论课. 懂神经网络可能只要一小时,但是调神经网络可能要几天. https://zhuanlan.z

深度学习调参经验汇总

此篇文章是在原创教程这个栏目下,但实际上是一篇汇总整理文章.相信大家在做深度学习时对调参尤为无奈,经验不足乱调一通,或者参数太多无从下手,我也如此.希望通过此文汇总网上一些调参的经验方法,供大家参考.此文会对网上每一篇调参文章做简练的总结与提炼,以此为此文的组成单元,并附上原文的链接.如果遇到不对的地方,欢迎指正~本文也将不定期更新,最后祝大家调参(炼金)顺利! 有多少人工,就有多少智能!(笑哭脸) 人工智障 炼金大法 你已经是成熟的算法了,要学会自己调参 正文开始 UNIT 1 case1:网

深度学习网络调参技巧

转自https://zhuanlan.zhihu.com/p/24720954?utm_source=zhihu&utm_medium=social 之前曾经写过一篇文章,讲了一些深度学习训练的技巧,其中包含了部分调参心得:深度学习训练心得.不过由于一般深度学习实验,相比普通机器学习任务,时间较长,因此调参技巧就显得尤为重要.同时个人实践中,又有一些新的调参心得,因此这里单独写一篇文章,谈一下自己对深度学习调参的理解,大家如果有其他技巧,也欢迎多多交流. 好的实验环境是成功的一半 由于深度学习实

深度学习-网络调参技巧

最近在做深度学习实验,跑一次实验轻则以小时计.重则以天计,实在没有那么多的时间可以等待,因此想想用尽可能少的实验次数,得到尽可能好的实验效果.这样的话,问题就可以归结为如何设计合适的网络结构.如何设计合适的训练策略,主要就是: 层数.每一层卷积核个数.卷积权重初始化方式.dropout ratio.BN.全连接层神经元个数.Relu等网络结构参数应该如何选? 学习率.decay等solver参数又该如何设置? 在参考炼丹实验室的基础上,并结合自己的体会,谈谈对调参的理解,大家如果有其他技巧,也欢

深度学习_调参经验

面对一个图像分类问题,可以有以下步骤: 1.建立一个简单的CNN模型,一方面能够快速地run一个模型,以了解这个任务的难度 卷积层1:卷积核大小3*3,卷积核移动步长1,卷积核个数64,池化大小2*2,池化步长2,池化类型为最大池化,激活函数ReLU. 卷积层2:卷积核大小3*3,卷积核移动步长1,卷积核个数128,池化大小2*2,池化步长2,池化类型为最大池化,激活函数ReLU. 卷积层3:卷积核大小3*3,卷积核移动步长1,卷积核个数256,池化大小2*2,池化步长2,池化类型为最大池化,激

xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度?

问题: 用xgboost/gbdt在在调参的时候把树的最大深度调成6就有很高的精度了.但是用DecisionTree/RandomForest的时候需要把树的深度调到15或更高.用RandomForest所需要的树的深度和DecisionTree一样我能理解,因为它是用bagging的方法把DecisionTree组合在一起,相当于做了多次DecisionTree一样.但是xgboost/gbdt仅仅用梯度上升法就能用6个节点的深度达到很高的预测精度,使我惊讶到怀疑它是黑科技了.请问下xgboo

风险中性的深度学习选股策略

一.数据驱动型机器学习模型的问题 目前流行的机器学习方法,包括深度学习,大部分是数据驱动的方法,通过对训练集数据学习来提取知识.数据驱动型机器学习方法应用成功的前提是:从训练集数据中学习到的"知识"在样本外外推时依然适用. 当机器学习方法应用于投资领域时,一般是以历史数据作为训练集数据来训练模型,应用在未来的市场中.在深度学习多因子选股策略中,也是通过对历史股票行情数据的学习,来建立预测模型.此类机器学习方法在投资领域的应用是否会成功,取决于从历史数据中学习到的模型在未来的外推中是否有

从下往上看--新皮层资料的读后感 第五部分 从perceptron 感知机学习自动调参开始

从上节已经知道perceptron 不是什么智能算法,在它的基础上我们需要去解决调参的问题.既然是调节参数,总要有个目标和手段吧,看看这些大神怎么搞的.首先建立目标,对于生活里面常常会面对分类的问题,比如:在人群中把流氓分子找出来,我们已经有3000个强奸犯和7000个普通的人的档案记录. 大家希望找到一个办法,给出新的档案,按照这个档案的情况识别第10001个人是不是是不是流氓.好吧,这很不道德,流氓好像也显得太多,但我们姑且这么干吧.首先我们先用人的模式干一次这个事情.先把应用题要求梳理一下

【集成学习】lightgbm调参

lightgbm使用leaf_wise tree生长策略,leaf_wise_tree的优点是收敛速度快,缺点是容易过拟合. # lightgbm关键参数 # lightgbm调参方法cv 1 # -*- coding: utf-8 -*- 2 """ 3 # 作者:wanglei5205 4 # 邮箱:[email protected] 5 # 博客:http://cnblogs.com/wanglei5205 6 # github:http://github.com/wa