51nod 1594 Gcd and Phi 反演

OTZ 又被吊打了。。。我当初学的都去哪了???


思路:反演套路?

提交:\(1\)次

题解:

求\(\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(gcd(\varphi(i),\varphi(j)))\)

设\(c[i]=\sum_{j=1}^n[\varphi(j)==i]\)

有:

\(\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(gcd(i,j))*c[i]*c[j]\)

欧拉反演一下,把\(gcd\)扔出来

\(\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{d|gcd(i,j)}\varphi(d)*c[i]*c[j]*[gcd(i,j)==d]\)

$\sum_{d=1}^{n}\varphi(d) \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}?\sum_{j=1}^{\lfloor \frac{n}{d} \rfloor} c[i*d] * c[j*d] * [gcd(i,j)==1] $

$\sum_{d=1}^{n}\varphi(d) \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}c[i*d] \sum_{j=1}^{\lfloor \frac{n}{d} \rfloor}c[j*d] ? [gcd(i,j)==1] $

\(\sum_{d=1}^{n}\varphi(d) \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}c[i*d] \sum_{j=1}^{\lfloor \frac{n}{d} \rfloor}c[j*d] \sum_{k|gcd(i,j)} \mu(k)\)

\(\sum_{d=1}^{n}\varphi(d) \sum_{k=1}^{\lfloor \frac{n}{d} \rfloor} \mu(k) \sum_{i=1}^{\lfloor \frac{n}{d*k} \rfloor}c[i*d*k] \sum_{j=1}^{\lfloor \frac{n}{d*k} \rfloor}c[j*d*k]\)

设\(s[i]=\sum_{j=1}^{\lfloor \frac{n}{i} \rfloor}\ c[i*j]\),注意到\(s[i]\)可以在\(O(nlogn)\)计算出来

\(\sum_{d=1}^{n}\ \varphi(d) \sum_{k=1}^{\lfloor \frac{n}{d} \rfloor} \mu(k)\ s[d*k]^2\)

交换一下\(d\)与\(k\),可以优化枚举(见代码)

\(\sum_{d=1}^{n}\ \mu(d) \sum_{k=1}^{\lfloor \frac{n}{d} \rfloor} \varphi(k)\ s[d*k]^2\)

#include<cstdio>
#include<iostream>
#include<cstring>
#define ll long long
#define R register ll
using namespace std;
namespace Luitaryi {
template<class I> inline I g(I& x) { x=0;
  register I f=1; register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
  do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*=f;
} const int N=2e6;
int T,n,cnt,p[N>>1],phi[N+10],mu[N+10],c[N+10];
ll s[N+10],ans; bool v[N+10];
inline void PRE() { phi[1]=mu[1]=1;
  for(R i=2;i<=N;++i) {
    if(!v[i]) p[++cnt]=i,phi[i]=i-1,mu[i]=-1;
    for(R j=1;j<=cnt&&i*p[j]<=N;++j) {
      v[i*p[j]]=true;
      if(i%p[j]==0) {
        phi[i*p[j]]=phi[i]*p[j];
        break;
      } phi[i*p[j]]=phi[i]*(p[j]-1);
      mu[i*p[j]]=-mu[i];
    }
  }
}
inline void calc(int n) { ans=0;
  memset(c,0,sizeof(c)),memset(s,0,sizeof(s));
  for(R i=1;i<=n;++i) ++c[phi[i]];
  for(R i=1;i<=n;++i) for(R j=1,lim=n/i;j<=lim;++j) s[i]+=c[i*j];
  for(R d=1;d<=n;++d) if(mu[d]) for(R k=1,lim=n/d;k<=lim;++k) //if(mu[d]) 优化枚举
    ans+=mu[d]*phi[k]*s[d*k]*s[d*k];
}
inline void main() {g(T); PRE(); while(T--) g(n),calc(n),printf("%lld\n",ans);}
} signed main() {Luitaryi::main(); return 0;}


2019.08.11
89

原文地址:https://www.cnblogs.com/Jackpei/p/11337254.html

时间: 2024-11-10 14:13:25

51nod 1594 Gcd and Phi 反演的相关文章

51nod 1594 Gcd and Phi(莫比乌斯反演)

题目链接 传送门 思路 如果这题是这样的: \[ F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}\phi(gcd(i,j)) \] 那么我们可能会想到下面方法进行反演: \[ \begin{aligned} F(n)=&\sum\limits_{k=1}^{n}\phi(k)\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}[gcd(i,j)=k]&\=&\sum\limits_{k=1}^{n}\p

【HDU1695】GCD(莫比乌斯反演)

[HDU1695]GCD(莫比乌斯反演) 题面 题目大意 求\(a<=x<=b,c<=y<=d\) 且\(gcd(x,y)=k\)的无序数对的个数 其中,你可以假定\(a=c=1\) 所有数都\(<=100000\) 数据组数\(<=3000\) 题解 莫比乌斯反演 作为一道莫比乌斯反演的题目 首先我们要迈出第一步 如果有\(gcd(x,y)=k\) 那么,我们就有\(gcd(\frac{x}{k},\frac{y}{k})=1\) 所以,现在问题相当于转化为了求 \(

【BZOJ2820】YY的GCD(莫比乌斯反演)

[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{d=1}^n[d\_is\_prime]\sum_{i=1}^{n/d}[\frac{n}{id}][\frac{m}{id}]\] 老套路了 令\(T=id\) \[ans=\sum_{T=1}^{n}[\frac{n}{T}][\frac{m}{T}]\sum_{d|T}[d\_is\_prim

【反演复习计划】【51nod1594】Gcd and Phi

现在感觉反演好多都是套路QAQ-- #include<bits/stdc++.h> using namespace std; const int N=2e6+5; typedef long long ll; int n,cnt,prime[N],phi[N],mu[N],vis[N]; ll ans,s[N],f[N]; void calcmu(){ memset(prime,0,sizeof(prime));cnt=0; memset(phi,0,sizeof(phi));memset(mu

【题解】51Nod 1594 莫比乌斯反演

先咕了(等我学会Markdown code 1 // 2 // main.cpp 3 // 51nod 4 // 5 // Created by gengyf on 2019/8/8. 6 // Copyright © 2019 yifan Geng. All rights reserved. 7 // 8 9 #include <iostream> 10 using namespace std; 11 namespace gengyf{ 12 #define maxn 2000010 13

hdu_1695: GCD 【莫比乌斯反演】

题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就好了.注意要删去重复的. 关于 莫比乌斯反演 的结论 #include<bits/stdc++.h> using namespace std; typedef long long LL; const int maxn=1e6; int prime[maxn+5]; bool check[maxn+

acdream 1148 GCD SUM 莫比乌斯反演 ansx,ansy

GCD SUM Time Limit: 8000/4000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitStatisticNext Problem Problem Description 给出N,M执行如下程序:long long  ans = 0,ansx = 0,ansy = 0;for(int i = 1; i <= N; i ++)   for(int j = 1; j <= M; j ++)     

HDU 1695 GCD (莫比乌斯反演)

传送门 GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 9749    Accepted Submission(s): 3648 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a-b, y in c-d that GCD(x, y)

HDU 1695 GCD 【莫比乌斯反演例题】

GCDTime Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4291 Accepted Submission(s): 1502   Problem DescriptionGiven 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k.