mysql 的简单优化

合理的建立索引的建议:

(1)  越小的数据类型通常更好:越小的数据类型通常在磁盘、内存和CPU缓存中都需要更少的空间,处理起来更快。

(2)  简单的数据类型更好:整型数据比起字符,处理开销更小,因为字符串的比较更复杂。在MySQL中,应该用内置的日期和时间数据类型,而不是用字符串来存储时间;以及用整型数据类型存储IP地址。

(3)  尽量避免NULL:应该指定列为NOT NULL,除非你想存储NULL。在MySQL中,含有空值的列很难进行查询优化,因为它们使得索引、索引的统计信息以及比较运算更加复杂。你应该用0、一个特殊的值或者一个空串代替空值

这部分是关于索引和写SQL语句时应当注意的一些琐碎建议和注意点。

1. 当结果集只有一行数据时使用LIMIT 1

2. 避免SELECT *,始终指定你需要的列

从表中读取越多的数据,查询会变得更慢。他增加了磁盘需要操作的时间,还是在数据库服务器与WEB服务器是独立分开的情况下。你将会经历非常漫长的网络延迟,仅仅是因为数据不必要的在服务器之间传输。

3. 使用连接(JOIN)来代替子查询(Sub-Queries)

连接(JOIN).. 之所以更有效率一些,是因为MySQL不需要在内存中创建临时表来完成这个逻辑上的需要两个步骤的查询工作。

4. 使用ENUMCHAR 而不是VARCHAR,使用合理的字段属性长度

5. 尽可能的使用NOT NULL

6. 固定长度的表会更快

7. 拆分大的DELETE INSERT 语句

8. 查询的列越小越快

Where条件

在查询中,WHERE条件也是一个比较重要的因素,尽量少并且是合理的where条件是很重要的,尽量在多个条件的时候,把会提取尽量少数据量的条件放在前面,减少后一个where条件的查询时间。

有些where条件会导致索引无效:

Ø where子句的查询条件里有!=,MySQL将无法使用索引。

Ø where子句使用了Mysql函数的时候,索引将无效,比如:select * from tb where left(name, 4) = ‘xxx’

Ø 使用LIKE进行搜索匹配的时候,这样索引是有效的:select * from tbl1 where name like ‘xxx%’,而like ‘%xxx%’ 时索引无效

时间: 2024-10-23 03:19:32

mysql 的简单优化的相关文章

mysql的简单优化【简单易学】

1.选取最适用的字段属性: 表字段尽量设小,不要给数据库增加没必要的空间:如:值为'01'.'02',给char(2)即可: 2.使用连接(JOIN)来代替子查询(Sub-Queries): 使用join是因为MySQL不需要在内存中创建临时表来完成这个逻辑上的需要两个步骤的查询工作. 3.建立索引: 一般用在JOIN,WHERE判断,ORDERBY排序字段上. 4.避免使用select * from 表名: 需要什么字段就写什么字段. 5.尽量避免在WHERE中!=或者<>,否则放弃使用索引

MySQL初始化简单优化

1,yum  2,源码 3,二进制 4,源码+yum 不管哪种方式装完成数据库,都需要对数据库做一些优化. 优化数据库 mysql> select host,user from mysql.user; +-----------+------+ | host | user | +-----------+------+ | 127.0.0.1 | root | | ::1 | root | | localhost | | | localhost | root | | www | | | www |

MySQL的简单优化

一.如何发现需要优化的SQL 主要使用MySQL的慢查日志对有效率问题的SQL进行监控 第一步:启动慢查日志的监控 打开开关,将未使用索引的查询记录到慢查日志中 设置查询时间,当查询时间大于这个值,就记录到慢查日志中 打开开关,启动慢查日志监控 第二步:使用慢查日志分析工具比如mysqldumpslow或者pt-query-digest来 查看有执行效率问题的SQL 二.如何对某条SQL优化 通过explain查看SQL的执行计划: 一是执行计划中SQL是走索引还是全表扫描.如select ma

mysql中的优化, 简单的说了一下垂直分表, 水平分表(有几种模运算),读写分离.

一.mysql中的优化 where语句的优化 1.尽量避免在 where 子句中对字段进行表达式操作select id from uinfo_jifen where jifen/60 > 10000;优化后:Select id from uinfo_jifen where jifen>600000; 2.应尽量避免在where子句中对字段进行函数操作,这将导致mysql放弃使用索引 select uid from imid where datediff(create_time,'2011-11

架构设计:系统存储(8)——MySQL数据库性能优化(4)

================================ (接上文<架构设计:系统存储(7)--MySQL数据库性能优化(3)>) 4-3.InnoDB中的锁 虽然锁机制是InnoDB引擎中为了保证事务性而自然存在的,在索引.表结构.配置参数一定的前提下,InnoDB引擎加锁过程是一样的,所以理论上来说也就不存在"锁机制能够提升性能"这样的说法.但如果技术人员不理解InnoDB中的锁机制或者混乱.错误的索引定义和同样混乱的SQL写操作语句共同作用,那么导致死锁出现的

针对MySQL大表优化方案

详解MySQL大表优化方案 (1).字段 (2).索引 (3).规范查询SQL (4).存储引擎 (5).mysql配置参数优化 (6).mysql读写分离 (7).分区和分表 单表优化: 当单表的数据不是一直在暴增,不建议使用拆分,拆分会带来逻辑,部署,运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的.而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量 (1).字段 l 尽量使用TINYINT.SMALLINT

架构设计:系统存储(9)——MySQL数据库性能优化(5)

=================================== (接上文<架构设计:系统存储(9)--MySQL数据库性能优化(5)>) 4-3-3-3.避免死锁的建议 上一篇文章我们主要介绍了MySQL数据库中锁的基本原理.工作过程和产生死锁的原因.通过上一篇文章的介绍,可以确定我们需要业务系统中尽可能避免死锁的出现.这里为各位读者介绍一些在InnoDB引擎使用过程中减少死锁的建议. 正确使用读操作语句 经过之前文章介绍,我们知道一般的快照读是不会给数据表任何锁的.那么这些快照读操作

理解MySQL——索引与优化

转自:理解MySQL——索引与优化 写在前面:索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调优的起点.考虑如下情况,假设数据库中一个表有10^6条记录,DBMS的页面大小为4K,并存储100条记录.如果没有索引,查询将对整个表进行扫描,最坏的情况下,如果所有数据页都不在内存,需要读取10^4个页面,如果这10^4个页面在磁盘上随机分布,需要进行10^4次I/O,假设磁盘每次I/O时间为10ms(忽略数据传输时间),则总共需要100s(但实际上要好很多很多).如果对之建立B-Tr

MySQL 调优/优化的 100 个建议

MySQL 调优/优化的 100 个建议 提交 我的评论 加载中 已评论 MySQL 调优/优化的 100 个建议 2015-07-08 数据库开发 数据库开发 数据库开发 微信号 DBDevs 功能介绍 分享数据库相关技术文章.教程和工具,另外还包括数据库相关的工作.偶尔也谈谈程序员人生 :) (点击上方蓝字,快速关注我们) (编注:本文写于 2011 年) MySQL是一个强大的开源数据库.随着MySQL上的应用越来越多,MySQL逐渐遇到了瓶颈.这里提供 101 条优化 MySQL 的建议