树状数组2 - 区间加 单点求和

树状数组 = O(logn) 单点修改 ,O(logn) 区间查询

如果要做到 区间修改 单点查询 我们就要加入差分的思想

用树状数组记录数组的差分 然后对差分进行前缀和就可以得到单点的数据

//ios::sync_with_stdio(false);
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int MAXN = 500010;
int n,m;
ll C[MAXN];
ll lowbit(ll x)
{
    return x&-x;
}
void add(ll i,ll val)
{
    while(i<=n){
        C[i]+=val;
        i +=lowbit(i);
    }
}
ll sum(ll i)
{
    ll s = 0;
    while(i>0){
        s+=C[i];
        i-=lowbit(i);
    }
    return s;
} 

int main(){
    cin >> n >> m;
    ll l,r,op,k;
    ll now = 0;
    for(int i=1;i<=n;++i){
        cin >> k;
        add(i,k-now);
        now = k;
    }//初始化记录差分数组
    for(int i=0;i<m;++i){
        cin >> op ;
        if(op==1){
            cin >> l >> r >> k;
            add(l,k);
            add(r+1,-k); //区间修改
        }
        else{
            cin >> k;
            cout << sum(k) <<endl;  //单点查询
        }
    }
    return 0;
}

原文地址:https://www.cnblogs.com/xxrlz/p/10392823.html

时间: 2024-10-14 03:07:33

树状数组2 - 区间加 单点求和的相关文章

二维树状数组的区间加减及查询 tyvj 1716 上帝造题的七分钟

具体解释见小结.http://blog.csdn.net/zmx354/article/details/31740985 #include <algorithm> #include <iostream> #include <cstring> #include <cstdlib> #include <cstdio> #include <queue> #include <cmath> #include <stack>

Luogu P3368 【模板】树状数组 2 [区间修改-单点查询]

P3368 [模板]树状数组 2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表示该数列数字的个数和操作的总个数. 第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值. 接下来M行每行包含2或4个整数,表示一个操作,具体如下: 操作1: 格式:1 x y k 含义:将区间[x,y]内每个数加上k 操作2: 格式:2 x 含义:输出第x个数的值 输出格式: 输出

树状数组求区间最值

树状数组求区间最值 树状数组(Binary Index Tree)利用二进制的一些性质巧妙的划分区间,是一种编程,时间和空间上都十分理想的求区间和的算法,同样我们可以利用树状数组优美的区间划分方法来求一个序列的最值 约定以 num[]  表示原数组, 以 idx[] 表示索引数组, Lowbit(x)=x&(-x) 树状数组求和时通过构造数组 idx[] 使 idx[k]=sum(num[tk]), tk [k-Lowbit(k)+1,k], 使用同样的方法构造最值索引数组: 以最大值为例, 先

树状数组求区间最大值(树状数组)(复习)

如题. 当遇到单点更新时,树状数组往往比线段树更实用. 算法: 设原数序列为a[i],最大值为h[i](树状数组). 1.单点更新: 直接更新a[i],然后再更新h[i].若h[i]的值有可能改变的,则表示区间一定包含i结点.那么就两层lowbit更新所有可能的h. 单点更新时间复杂度O(logn*logn) 1 void update(int x) 2 { 3 while(x<=n) 4 { 5 h[x]=a[x]; 6 for(int i=1;i<lowbit(x);i<<=1

二维树状数组模板(区间修改+区间查询)

二维树状数组模板(区间修改+区间查询) 例题:JOIOI上帝造题的七分钟 一共两种操作: \(L\ x_1\ y_1\ x_2\ y_2\ d\):把\((x_1,y_1)\),\((x_2,y_2)\)这个矩形内所有元素加\(d\). \(k\ x_1\ y_1\ x_2\ y_2\):查询\((x_1,y_1)\),\((x_2,y_2)\)这个矩形内所有元素的和. 代码如下: #include<bits/stdc++.h> #define RG register #define IL i

【LuoguP3038/[USACO11DEC]牧草种植Grass Planting】树链剖分+树状数组【树状数组的区间修改与区间查询】

模拟题,可以用树链剖分+线段树维护. 但是学了一个厉害的..树状数组的区间修改与区间查询.. 分割线里面的是转载的: -------------------------------------------------------------------------------- [ 3 ]  上面都不是重点--重点是树状数组的区间修改+区间查询 这个很好玩 其实也挺简单 首先依旧是引入delta数组 delta[i]表示区间 [i, n] 的共同增量 于是修改区间 [l, r] 时修改 delt

树状数组实现区间修改+区间查询

事实上,这只是我弱弱的luogu博客的存档-- 线段树模板(1) 题意要求:给定一个序列,支持区间修改和区间查询. 智障数据结构模板题-- 当然,题目名字告诉我们要用线段树.但是线段树很长,容易出现问题,而且跑得稍慢,所以就有dalao开始yy:可不可以让树状数组支持区间修改和查询呢? 于是伟大的"超级树状数组"横空出世了. 首先,我们看树状数组是如何支持区间修改的: 设 tree[i]=a[i]-a[i-1] (差分),那么容易得到: tree[1]+tree[2]+--+tree[

2018中国大学生程序设计竞赛 - 网络选拔赛 1010 YJJ&#39;s Salesman 【离散化+树状数组维护区间最大值】

题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6447 YJJ's Salesman Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 919    Accepted Submission(s): 290 Problem Description YJJ is a salesman who h

树状数组的区间修改与单点查询与区间查询

如何将普通树状数组升级 普通的单点修改单点查询就不讲了,从区间修改和单点查询讲起. 原来的值存在a[]里面,多建立个数组c1[],注意:c1[i]=a[i]-a[i-1]. 那么求a[i]的值的时候a[i]=a[i-1]+c1[i]=a[i-2]+c1[i]+c1[i-1]=-..=c1[1]+c1[2]+-+c1[i]. 所以就用c1[]建立树状数组,便可以很快查询a[i]的值.不多说,见代码. #include<iostream> #include<cstdio> #defin