Python 数据分析与挖掘的学习路径

0.前言

很多人反映在学习了Python基础之后无所适从,不知道下一步往哪走。作为较早期的跨界者(土木狗)深有体会。本文将结合上图,为后来者指明方向,可作为参考。
在此强调:如果打算依靠Python逃离现有的工作(如土木施工),那就要认真想想自己打算做哪一方面的工作,互联网营销、前端、运维、爬虫、数据分析、数据挖掘、Web开发?强烈建议:直接上拉钩或者Boss直聘,针对性学习更为稳妥。如果打算业余玩玩,那跟着我们一起业余吧,嚯嚯~

.在入门学习大数据的过程当中有遇见学习,行业,缺乏系统学习路线,系统学习规划,欢迎你加入我的大数据学习交流裙:529867072 ,裙文件有我这几年整理的大数据学习手册,开发工具,PDF文档书籍,你可以自行下载。

1.目标确定

凡事预则立,不预则废。事先明确自己要处理事情,大体上有个方向。比如你准备分析当地房价,或是电商某种类数据,或是某个垂直领域的数据等。

2.数据获取

爬虫是Python初学者的必经之路,通过爬虫既可以获取数据,还可以理解Web的工作原理。前者可以作为数据分析的原料,后者可以作为数据Web可视化的基础。至于你使用Request,还是Scrapy,或是Selenium,可以随意一点,这不是公众号【调包】的重点,度娘或GitHub有很多范例供大家参考。

3.数据分析

《利用Python进行数据分析》该书详细讲述了Pandas的使用,用它可以实现上图流程之后的底层流程(数据整理、描述分析、洞察结论、报告撰写),这个路径可以称之“数据分析”。

4.数据挖掘

上图数据整理之后的上层路径(建模分析、模型测试、迭代优化、模型加载、报告撰写),这个路径可以称之“数据挖掘”。将会用到Sklearn、XGboost、Pytorch、TensorFlow、Spark、Hadoop等库或工具。

5.报告撰写
不管是数据分析还是数据挖掘,最终都要反映到报告中,可以在线动态展示数据、也可以是离线静态报表,或者插入PPT。这个阶段Matplotlib是基础,至于用其他可视化库或是非Python系的工具,可以随意点,重点在于你分析的结论能否让阅读者肯定。

6.需求反馈

从报告撰写再回到目标确定,这是一个产品迭代的闭环。类似于土木施工组织管理的PDCA。

原文地址:https://blog.51cto.com/14296550/2387120

时间: 2024-11-05 17:23:34

Python 数据分析与挖掘的学习路径的相关文章

数据分析学习资料《利用Python进行数据分析第2版》+《Python数据分析与挖掘实战》+《从零开始学Python数据分析与挖掘》

数据分析涉及统计学.线性代数.图形分析绘制.数据挖掘等知识,推荐系统学习电子资料<利用Python进行数据分析第2版>.<Python数据分析与挖掘实战>.<从零开始学Python数据分析与挖掘>电子书和代码测试. <利用Python进行数据分析第2版>电子书代码,每一章之间有递进关系,适合在Python入门<Python编程从入门到实践>电子书之后阅读,本专门针对数据分析领域的.我细致地读了一遍,敲了一遍代码,一开始没有头绪,进展缓慢,后来逐渐

Python数据分析与挖掘所需的Pandas常用知识

Python数据分析与挖掘所需的Pandas常用知识 前言Pandas基于两种数据类型:series与dataframe.一个series是一个一维的数据类型,其中每一个元素都有一个标签.series类似于Numpy中元素带标签的数组.其中,标签可以是数字或者字符串.一个dataframe是一个二维的表结构.Pandas的dataframe可以存储许多种不同的数据类型,并且每一个坐标轴都有自己的标签.你可以把它想象成一个series的字典项. Pandas常用知识 一.读取csv文件为dataf

Numpy学习:《Python数据分析基础教程NumPy学习指南第2版》中文PDF+英文PDF+代码

NumPy是一个优秀的科学计算库,提供了很多实用的数学函数.强大的多维数组对象和优异的计算性能,不仅可以取代Matlab和Mathematica的许多功能,而且业已成为Python科学计算生态系统的重要组成部分.但与这些商业产品不同,它是免费的开源软件. 推荐学习<Python数据分析基础教程NumPy学习指南第2版>,通过书中丰富的示例,学会Matplotlib绘图,并结合使用其他Python科学计算库(如SciPy和Scikits),让工作更有成效,让代码更加简洁而高效. 学习参考: &l

Python数据分析与挖掘

一.爬虫入门 网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本. 运用python3.6中的urllib.request 1.快速爬取一个网页 (1)get请求方式 #!/usr/bin/env python # -*- coding: UTF-8 -*- # Author:Du Fei import urllib.request # keywd = "python" keywd ="

Python数据分析入门与实践 学习 资源??

pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程. pandas提供了快速,灵活和富有表现力的数据结构,目的是使“关系”或“标记”数据的工作既简单又直观.它旨在成为在Python中进行实际数据分析的高级构建块. 入门介绍 pandas适合于许多不同类型的数据,包括: 具有异构类型列的表格数据,例如SQL表格或Excel数据 有序和无序(不一定是固定频率)时间序列数据. 具有行列标签的任意矩阵数据(

python数据分析 基础统计学的学习(2)

这一篇介绍一些描述性统计的基本情况. 数据处理是描述性统计的第一步,对于搜集的数据,首先应先排序,将其按照一定的顺序整理.操作完成后要进行分组,以被研究事物的本质属性进行分组,分组的标准要明确,不能出现数据的交叉和重叠. 一.次数分布概况 次数分布一般是初步整理好一组数据后,将同一组或同一类观测值的原始数据整理成频次分布表,表现数据在各个分组区间内的散布情况. 举例来说,搜集到一个班级60人的考试成绩,这是原始数据. 首先介绍简单次数分布,按照及格.良好.优秀三档这样的描述性文字分,把描述性文字

全体快三源码开发Python数据分析与挖掘所需的Pandas常用知识

前言 全体快三源码开发 (http://www.1159880099.com) QQ1159880099 Pandas基于两种数据类型:series与dataframe. 一个series是一个一维的数据类型,其中每一个元素都有一个标签.series类似于Numpy中元素带标签的数组.其中,标签可以是数字或者字符串. 一个dataframe是一个二维的表结构.Pandas的dataframe可以存储许多种不同的数据类型,并且每一个坐标轴都有自己的标签.你可以把它想象成一个series的字典项.

新的学习路径、学习想法和思路的头脑风暴:基于泰迪云课程,对数据分析和数据建模,机器学习算法进行统筹,接着是基于大数据的数据挖掘、进度、

新的学习路径.学习想法和思路的头脑风暴:基于泰迪云课程,对数据分析和数据建模,机器学习算法进行统筹,接着是基于大数据的数据挖掘.进度. 泰迪云代码已经下载,对相关内容进行应用和学习 想通视频之后对代码进行研究 专家经验.优秀经验工程师经验转化. 从论文中第三四大章,读取 设计和解决问题流程 找论文.使用benchmark 上有收录论文.找到论文.不建议自己先去想. 以后一定 偏分析,偏挖掘.偏决策的.不是执行者,执行者是最low的,最强的解决方案,都按论文来找. 高端会议.每年会出来十多篇研究成

python数据分析入门学习笔记儿

学习利用python进行数据分析的笔记儿&下星期二内部交流会要讲的内容,一并分享给大家.博主粗心大意,有什么不对的地方欢迎指正~还有许多尚待完善的地方,待我一边学习一边完善~ 前言:各种和数据分析相关python库的介绍(前言1~4摘抄自<利用python进行数据分析>) 1.Numpy: Numpy是python科学计算的基础包,它提供以下功能(不限于此): (1)快速高效的多维数组对象naarray (2)用于对数组执行元素级计算以及直接对数组执行数学运算的函数 (3)用于读写硬盘