统计学习方法 李航 提升方法



很好理解,就是将一些基本的性能一般的弱分类器组合起来,来构成一个性能较好的强分类器;这其中如果数据一样的话那不是每次训练出的分类器就都一样了嘛,所以在每次训练后要根据训练结果来改变数据的权重;还有一个关键点是通过什么方法来组合这些弱分类器.





由8.2可看出错误率$e_m$越小,$\alpha_m$就越大,又8.4看出权值与$\alpha_m$成反比,所以分类正确的数据在下轮分类中权重减小,而这就是改变权重的原理;规范化因子实际上就是凑出来为了使权值求和为1而已;且在最终对分类器进行线性组合时,又和$\alpha_m$有关,因此错误率小的分类器起的作用会更大;还要注意$\alpha_m$求和不为1,而是以它的符号决定分类出的结果???;要注意这里的第n轮分类器更可能分对第n-1轮未分对的数据,但它不能保证之前分对的数据还是能分对;





一个例子


概算发的误差分析(表示看不太懂)




介绍了下前向分布算法,不难理解.



这里它证明了adaboost算法就是前向分布加法算法的特殊例子,这里比较想不通的就是为什么它的损失函数是指数函数,好在文中给出了证明,关键就是在损失函数(指数函数)最小化时,得到的$\alpha_m$和$G_m(x)$就是adaboost算法所得到的$\alpha_m$和$G_m(x).



这里实际上就是对所有决策树进行累加,得到最终的结果.




这里一个关键点就是理解残差,实际上它指的是之前形成的提升树的估计值与实际值之前的差距(而在当前步就是对这个差距进行拟合);GBDT思想的一个比方:假如有个人30岁,我们首先用20岁去拟合,发现损失有10岁,这时我们用6岁去拟合刚才剩下的损失(10),发现差距还有4岁,第三轮我们用3岁拟合刚才剩下的差距(4),差距就只有一岁了。如此反复下去,每一轮迭代都是可以减小差距的.





https://blog.csdn.net/qq_39521554/article/details/80714945 这篇博客中的例子也很好,明确说明最终提升树的预测值是每个决策树的结果的累加,每一次生成决策树都是在之前得到的残差之上进行拟合得出的.


这里就是相当于更一般的情况,即当损失函数过于一般,每一步都不好拟合时,则用负梯度作为ie残差的近似值进行拟合.可参考这篇博客 https://www.jianshu.com/p/0e5ccc88d2cb

参考:
https://www.cnblogs.com/pinard/p/6140514.html 打的那个年龄比方很好
https://blog.csdn.net/qq_39521554/article/details/80714945 例子挺好的
https://www.jianshu.com/p/0e5ccc88d2cb 讲解梯度提升那块比较详细

原文地址:https://www.cnblogs.com/w-j-c/p/10661991.html

时间: 2024-10-15 12:52:26

统计学习方法 李航 提升方法的相关文章

统计学习方法 李航---第8章 提升方法

第8章提升方法 提升(boosting)方法是一种常用的统计学习方法,应用广泛且有效.在分类问题中,它通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能. 基本思想:对于分类问题而言,给定一个训练样本集,求比较粗糙的分类规则(弱分类器)要比求精确的分类规则(强分类器)容易得多.提升方法就是从弱学习算法出发,反复学习,得到一系列弱分类器(又称为基本分类器),然后组合这些弱分类器,构成一个强分类器.大多数的提升方法都是改变训练数据的概率分布(训练数据的权值分布),针对

统计学习方法 李航---第12章 统计学习方法总结

第12章 统计学习方法总结 1 适用问题 分类问题是从实例的特征向量到类标记的预测问题:标注问题是从观测序列到标记序列(或状态序列)的预测问题.可以认为分类问题是标注问题的特殊情况. 分类问题中可能的预测结果是二类或多类:而标注问题中可能的预测结果是所有的标记序列,其数目是指数级的. 感知机.k近邻法.朴素贝叶斯法.决策树是简单的分类方法,具有模型直观.方法简单.实现容易等特点: 逻辑斯谛回归与最大熵模型.支持向量机.提升方法是更复杂但更有效的分类方法,往往分类准确率更高: 隐马尔可夫模型.条件

统计学习方法 李航---第1章 统计学习方法概论

第一章 统计学习方法概论 统计学习的主要特点是: (1)统计学习以计算机及网络为平台,是建立在计算机及网络之上的; (2)统计学习以数据为研究对象,是数据驱动的学科: (3)统计学习的目的是对数据进行预测与分析: (4)统计学习以方法为中心,统计学习方法构建模型并应用模型进行预测与分析; (5)统计学习是概率论.统计学.信息论.计算理论.最优化理论及计算机科学等多个领域的交叉学科,并且在发展中逐步形成独自的理论体系与方法论. 统计学习的对象是数据Cdata) 统计学习的目的是对数据进行预铡与分析

统计学习方法笔记 提升树

提升树是以分类树或回归树为基本分类器的提升方法 提升树被认为是统计学习中性能最好的方法之一 提升方法实际采用加法模型(基函数的线性组合)与前向分步算法 以决策树为基函数的提升方法称为提升树 ? 对分类问题决策树是二叉分类树 对回归问题决策树是二叉回归树 ? 提升树模型可以表示为决策树的加法模型: T(x;Θm)表示决策树: Θm为决策树的参数: M为树的个数. 提升树算法采用前向分步算法. 首先确定初始提升树f0(x)=0,第m歩的模型是 fm-1(x)为当前模型,通过经验风险极小化确定下一棵决

统计学习方法-李航 第一章

第一章 统计学习方法概论 学习:如果一个系统能够通过执行某个过程改进它的性能,这就是学习 监督学习:从训练数据集中学习模型,对测试数据进行预测 回归问题:输入变量与输出变量均为连续变量的预测问题 分类问题:输出变量为有限个离散变量的预测问题 标注问题:输入变量与输出变量均为变量序列的预测问题 损失函数:度量预测错误的程度 经验风险:训练数据集的平均损失 期望风险:损失函数的期望值 根据大数定律,当样本容量N趋于无穷时,经验风险趋于期望风险 泛化能力:指由该方法学习到的模型对未知数据的预测能力 过

统计学习方法 李航---第6章 逻辑回归与最大熵模型

第6章 逻辑回归与最大熵模型 逻辑回归(logistic regression)是统计学习中的经典分类方法.最大嫡是概率模型学习的一个准则将其推广到分类问题得到最大熵模型(maximum entropy model).逻辑回归模型与最大熵模型都属于对数线性模型. 6.1 逻辑回归模型 定义6.1(逻辑分布):设X是连续随机变量,X服从逻辑斯谛分布是指 X具有下列分布函数和密度函数 式中,u为位置参数,r>0为形状参数. 逻辑分布的密度函数f(x)和分布函数F(x)的图形如图所示.分布函数属于逻辑

统计学习方法 李航---第11章 条件随机场

第11章 条件随机场 条件随机场(conditional random field, CRF)是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机变量构成马尔可夫随机场.条件随机场可以用于不同的预测问题,本章主要讲述线性链(linear chain)条件随机场在标注问题的应用,这时问题变成了由输入序列对输出序列预测的判别模型,形式为对数线性模型,其学习方法通常是极大似然估计或正则化的极大似然估计. 11.1 概率无向图模型 概率无向图模型(probabilist

统计学习方法 李航---第10章 隐马尔可夫模型

第10章隐马尔可夫模型 隐马尔可夫模型(hidden Markov model, HMM)是可用于标注问题的统计学习模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型. 10.1 隐马尔可夫模型的基本概念 定义10.1 (隐马尔可夫模型) 隐马尔可夫模型是关于时序的概率模型,描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程.隐藏的马尔可夫链随机生成的状态的序列,称为状态序列(state sequence):每个状态生成一个观

统计学习方法 李航---第7章 支持向量机

第7章 支持向量机 支持向量机(support vector machines, SVM)是一种二类分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器:支持向量机还包括核技巧,这使它成为实质上的非线性分类器.支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划(convex quadratic programming)的问题,也等价于正则化的合页损失函数的最小化问.支持向量机的学习算法是求解凸二次规划的最优化算法. 支持向量机学习模型:线性可分支持向量机(linear s

统计学习方法 李航---第5章 决策树

第5章 决策树 决策树(decision tree)是一种基本的分类与回归方法.本章主要讨论用于分类的决策树.决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程.它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布.其主要优点是模型具有可读性,分类速度快.学习时,利用训练数据,根据损失函数最小化的原则建立决策树模型.预测时,对新的数据,利用决策树模型进行分类.决策树学习通常包括3个步骤:特征选择.决策树的生成和决策树的修剪. 5.1 决策树模