ROC曲线与AUC

一、ROC曲线

1、简介

ROC曲线全称是“受试者工作特征曲线 ”(Receiver Operating Characteristic curve),又称为感受性曲线(Sensitivity curve)。

它源于二战中用于敌机检测的雷达信号分析技术,二十世纪六七十年代开始被用于一些心理学、医学检测中,此后被引入机器学习领域。

得此名的原因在于曲线上各点反映着相同的感受性,它们都是对同一信号刺激的反应,只不过是在两种不同的判定标准下所得的结果而已。

ROC曲线示意图如下图所示。

ROC曲线的横轴是“假正例率”(False Positive Rate,简称FPR),纵轴是“真正例率”(True Positive Rate,简称TPR),两者定义如下,公式中符号含义参见 混淆矩阵

\begin{align}\notag

TPR=\frac{TP}{TP+FN}

\end{align}

\begin{align}\notag

FPR=\frac{FP}{TN+FP}

\end{align}

现实任务中通常是利用有限个样本来绘制ROC曲线,此时仅能获得有限个(真正例率、假正例率)坐标,无法产生上图光滑的ROC曲线,只能绘制出下图所示的近似的ROC曲线。

2、绘制方法

很多机器学习是为测试样本产生一个实值或概率预测,然后将这个预测值与一个分类阈值(threshold)进行比较,若大于阈值则分为正类,小于阈值则为反类。

  1. 假设有m个正例和n个反例,根据预测结果对样例进行排序;
  2. 把分类阈值设为最大,即把所有样例均预测为反例,此时真正例率和假正例率均为0,即在坐标(0,0)处;
  3. 然后,将分类阈值依次设为每个样例的预测值,即依次将每个样例划分为正例,求出真正例率和假正例率,绘制出坐标。

3.优点

在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化。

但当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变。

二、AUC

AUC(Area Under Curve),即ROC曲线下的面积。

AUC越大,分类器效果越好。

假设按序连接成ROC曲线上点的坐标为

\begin{align}\notag

(x_{1},y_{1}),(x_{2},y_{2}),...,(x_{m},y_{m})

\end{align}

则AUC可估算为

\begin{align}\notag

AUC=\frac{1}{2} \sum_{i=1}^{m-1}(x_{i+1}-x_{i})\cdot (y_{i}+y_{i+1})

\end{align}



梦不会逃走,逃走的一直都是自己。——《蜡笔小新》

原文地址:https://www.cnblogs.com/dblsha/p/10277336.html

时间: 2024-07-29 16:16:16

ROC曲线与AUC的相关文章

ROC曲线、AUC、Precision、Recall、F-measure理解及Python实现

本文首先从整体上介绍ROC曲线.AUC.Precision.Recall以及F-measure,然后介绍上述这些评价指标的有趣特性,最后给出ROC曲线的一个Python实现示例. 一.ROC曲线.AUC.Precision.Recall以及F-measure 二分类问题的预测结果可能正确,也可能不正确.结果正确存在两种可能:原本对的预测为对,原本错的预测为错:结果错误也存在两种可能:原本对的预测为错,原本错的预测为对,如Fig 1左侧所示.其中Positives代表预测是对的,Negatives

机器学习之分类器性能指标之ROC曲线、AUC值

分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性. 横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例:(1-Specificity) 纵轴:真正类率(true postive rate TPR)灵敏度,Sensitivity(正类覆盖率) 2针对一个二分类问题,将实例分成正类(postive

混淆矩阵、准确率、精确率/查准率、召回率/查全率、F1值、ROC曲线的AUC值

准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前四者可以从混淆矩阵中直接计算得到,AUC值则要通过ROC曲线进行计算,而ROC曲线的横纵坐标又和混淆矩阵联系密切,所以在了解这些评价指标之前,先知道什么是混淆矩阵很有必要,也方便记忆. 1.混淆矩阵 对于一个二分类问题,我们可以得到如表 1所示的的混淆矩阵(confusion matrix): 表

ROC曲线与AUC值

本文根据以下文章整理而成,链接: (1)http://blog.csdn.net/ice110956/article/details/20288239 (2)http://blog.csdn.net/chjjunking/article/details/5933105 1.概述 AUC(Area Under roc Curve)是一种用来度量分类模型好坏的一个标准.这样的标准其实有很多,例如:大约10年前在machine learning文献中一统天下的标准:分类精度:在信息检索(IR)领域中常

分类器性能指标之ROC曲线、AUC值

一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性. 横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例:(1-Specificity) 纵轴:真正类率(true postive rate TPR)灵敏度,Sensitivity(正类覆盖率) 2针对一个二分类问题,将实例分成正类(postive)或者负类(negative).但是实

【机器学习】--模型评估指标之混淆矩阵,ROC曲线和AUC面积

一.前述 怎么样对训练出来的模型进行评估是有一定指标的,本文就相关指标做一个总结. 二.具体 1.混淆矩阵 混淆矩阵如图: 相关公式: 公式解释: fp_rate: tp_rate: recall:(召回率) 值越大越好 presssion:(准确率) TP:本来是正例,通过模型预测出来是正列 TP+FP:通过模型预测出来的所有正列数(其中包括本来是负例,但预测出来是正列) 值越大越好 2.ROC曲线 过程:对第一个样例,预测对,阈值是0.9,所以曲线向上走,以此类推. 对第三个样例,预测错,阈

多分类下的ROC曲线和AUC

本文主要介绍一下多分类下的ROC曲线绘制和AUC计算,并以鸢尾花数据为例,简单用python进行一下说明.如果对ROC和AUC二分类下的概念不是很了解,可以先参考下这篇文章:http://blog.csdn.net/ye1215172385/article/details/79448575 由于ROC曲线是针对二分类的情况,对于多分类问题,ROC曲线的获取主要有两种方法: 假设测试样本个数为m,类别个数为n(假设类别标签分别为:0,2,...,n-1).在训练完成后,计算出每个测试样本的在各类别

ROC曲线,AUC面积

1. 什么是ROC曲线? ROC曲线是Receiver operating characteristic curve的简称,中文名为“受试者工作特征曲线”.ROC曲线源于军事领域,横坐标为假阳性率(False positive rate,FPR),纵坐标为真阳性率(True positive rate,TPR). 假阳性率 FPR = FP/N ---N个负样本中被判断为正样本的个数占真实的负样本的个数  真阳性率 TPR = TP/P ---P个正样本中被预测为正样本的个数占真实的正样本的个数

ROC曲线是通过样本点分类概率画出的 例如某一个sample预测为1概率为0.6 预测为0概率0.4这样画出来,此外如果曲线不是特别平滑的话,那么很可能存在过拟合的情况

ROC和AUC介绍以及如何计算AUC from:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里.这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC. ROC曲线 需要提前说明的是,我们这里只讨论二值分类器.对