LTE学习之路(2)

LTE的设计目标

  • 带宽灵活配置:支持1.4MHz, 3MHz, 5MHz, 10Mhz, 15Mhz, 20MHz
  • 峰值速率(20MHz带宽):下行100Mbps,上行50Mbps
  • 控制面延时小于100ms,用户面延时小于5ms
  • 能为速度>350km/h的用户提供100kbps的接入服务
  • 支持增强型MBMS(E-MBMS)
  • 取消CS域,CS域业务在PS域实现,如VoIP
  • 系统结构简单化,低成本建网

名词介绍

3GPP(3th Generation Partnership Project):第三代合作伙伴计划

ITU(International Telecommunication Union):国际电信联盟

UMTS(Universial Mobile Telecommunication System):通用移动通信系统

GSM(Global System for Mobile communications):全球移动通信系统

UTRAN:通用陆地无线接入网    E-UTRAN:演进型通用陆地无线接入网

GPRS(General Packet Radio Service):通用分组无线业务

GPS(Global Positioning System):全球定位系统

UE(User Equipment):用户终端

SAE(System Architecture Evolution):系统架构演进

EPC(Evolved Packet Core):演进型分组交换核心网

EPS(Evolved Packet System):演进型分组系统

eNodeB:演进型基站  HeNB:家庭基站

CSG(Closed Subscriber Group):闭合用户群

ARQ(Automatic Repeat reQuest):自动请求重传

HARQ(Hybrid Automatic Repeat reQuest):混合自动请求重传

TFT(Traffic Flow Template):业务流模版

SDF(Service Data Flow):业务数据流

GTP(GPRS Tunneling Protocol):GTP隧道协议

HSPA(High Speed Packet Access):高速分组接入

HSPA+(High Speed Packet Access Evolution):高速分组接入演进

LTE宗旨

与以往蜂窝系统所采用的电路交换模式不同,LTE仅支持分组交换业务,它旨在在用户终端(UE分组数据网络之间建立无缝的移动IP连接。

LTE主要由两部分组成:无线接入技术演进(E-UTRAN)+系统架构演进(SAE);其中,SAE主要含有的是演进型分组交换核心网(EPC),其控制处理部分为移动性管理实体(MME),数据承载部分称为业务网关(S-GW);接入网(E-UTRAN)主要含有的网元是演进型基站(eNodeB)。

图: LTE网络架构

LTE网络接口

  • eNodeB之间由X2接口相互连接,支持数据和信令的直接传输;
  • eNodeB与EPC之间由S1接口连接,其中:S1-MME是eNodeB连接MME的控制面接口,S1-U是eNodeB连接S-GW的用户面接口。

与传统3G网络比较,LTE的网络结更加简单扁平,降低组网成本, 增加组网灵活性,并能大大减少用 户数据和控制信令的时延。

eNodeB的主要功能

  • 无线资源管理相关功能,包括:无线承载控制、接纳控制、连接移动性管理、上/下行动态资源的分配与调度;
  • IP头压缩与用户数据流加密;
  • UE附着时的MME选择;
  • 提供到业务网关(S-GW)的用户面数据的路由;
  • 寻呼消息的调度(scheduling)与传输(transmission);
  • 系统广播消息的调度与传输;
  • 测量与测量报告的配置。

MME的主要功能

  • 移动性管理
  • 会话管理
  • 用户鉴权和密钥管理
  • NAS层信令的加密和完整性保护
  • TA LIST管理
  • P-GW/S-GW选择

S-GW的主要功能

  • 分组路由和转发
  • IP头压缩
  • IDLE状态终结点,下行数据缓存
  • eNodeB间切换的锚点
  • 基于用户和承载的计费
  • 路由优化和用户漫游时QoS和计费策略实现功能

P-GW的主要功能

  • 分组路由和转发
  • 3GPP和非3GPP网络间的Anchor功能(相当于家乡代理HA的功能)
  • UE的IP地址分配,接入外部PDN的网关功能
  • 计费和QoS执行功能
  • 基于业务的计费

核心网(EPC)简介

第一点:EPC负责对用户终端的全面控制和有关承载的建立。

第二点:EPC包含的主要逻辑节点有:

  • 公共数据网(PDN)网关(P-GW)——负责用户IP地址分配和QoS保证,并根据PCRF规则进行基于流量的计费。负责将下行用户的IP包分配给不同的QoS承载。
  • 业务网关(S-GW)——用户IP数据包通过S-GW发送。当用户在eNodeB之间移动时,S-GW作为数据承载的本地移动性锚点;当用户处于空闲状态时,S-GW将保留承载信息并临时把下行数据存储在缓冲区里,以便当MME开始寻呼UE时重新建立承载。
  • 移动性管理实体(MME)——是处理UE和核心网络间信令交互的控制节点。在UE和核心网间所执行的协议栈称为非接入层协议(NAS)。

   MME所支持的功能可分为:

与承载管理相关的功能:包括建立、维护和释放承载,有NAS’xieyi中的会话管理层来执行;

与连接相关的功能:包括连接建立和网络与UE之间通信的安全几只,有NAS协议中的连接或移动性管理层来执行;

与其他网络交互工作的相关功能:包括切换语音业务到传统网络。

  • 增强服务移动定位中心(E-SMLC)——管理所有找到附着在E-UTRAN上UE位置所需资源的协调和调度
  • 移动定位中心网关(GMLC)——包含支持定位业务的功能。
  • 用户归属服务器(HSS,Home Subscriber Server)——含有用户的SAE开户信息(如:所归属EPS的QoS配置信息和用户漫游的接入限制);还保留用户可以连接的PDN信息(该信息可能以一种接入点名字的形式APN来表达或直接用PDN地址,即用户开户的IP地址来表达);HSS拥有诸如用户当前所连接或注册的移动性管理实体标识等动态信息。
  • 策略控制和计费规则功能(PCRF)——负责位于P-GW中策略控制加强功能(PCEF)中基于流量收费的功能。

LTE学习之路(2)

时间: 2024-08-15 02:18:51

LTE学习之路(2)的相关文章

LTE学习之路(9)—— 3GPP TS协议系列总结

规范编号 规范名称 内容 更新时间 射频系列规范 TS 36.101 UE无线发送和接收 描述FDD和TDD E-UTRA UE的最小射频(RF)特性 08-Oct-2010 TS 36.104 BS无线发送与接收 描述E-UTRA BS在成对频谱和非成对频谱的最小RF特性 30-Sep-2010 TS 36.106 FDD直放站无线发送与接收 描述FDD直放站的射频要求和基本测试条件 30-Sep-2010 TS 36.113 BS与直放站的电磁兼容 包含对E-UTRA基站.直放站和补充设备的

LTE学习之路(12)——PDCCH(续)

12.1 前言 PDCCH提供的主要功能之一就是传输物理层资源分配指示,并且在每个子帧上,PDCCH指示频域资源分配. 频域资源(一组资源块)分配信令设计的主要挑战是在灵活性和信令开销之间找到一个好的这种方案.一个可行的方法是发送组合的资源分配消息给所有UE,但有可能被拒绝,这是因为可靠到达所有的UE需要很高的功率,包括小区边缘的UE. LTE资源分配有3中类型:type0.type1和type2,具体使用哪种资源分配类型取决于所选的DCI format以及DCI内相关bit的配置.(有关DCI

LTE学习之路(6)——RRC

1 RRC协议功能 为NAS层提供连接管理,消息传递等服务: 对接入网的底层协议实体提供参数配置的功能: 负责UE移动性管理相关的测量.控制等功能 2 RRC状态 RRC_IDLE PLMN选择: NAS配置的DRX过程: 系统信息广播和寻呼: 邻小区测量: 小区重选的移动性: UE获取一个TA区内的唯一标识: eNB内无终端上下文 RRC_CONNECTION 网络侧有UE的上下文信息: 网络侧知道UE所处小区: 网络和终端可以传输数据: 网络控制终端的移动性: 邻小区测量: 存在RRC连接:

LTE学习之路(7)——LTE系统消息

1 系统消息包含: 主信息块(Master Information Block,MIB) 多个系统信息块(System Information Blocks,SIBs) 2 MIB 承载于BCCH——>BCH——>PBCH上 包括有限个用以读取其他小区信息的最重要.最常用的传输参数(如:系统带宽.系统帧号.PHICH配置信息) 时域:紧邻同步信道,以10ms为周期重传4次 频域:位于系统带宽中央的72个子载波(1.08MHz) 3  SIBs 除MIB外的系统信息,包括SIB1~SIB12:

LTE学习之路(5)——物理层

帧结构 LTE支持的两种无线帧 类型1:应用于FDD 类型2:应用于TDD FDD类型无线帧结构 FDD类型无线帧长为10ms,如上图所示.每帧分为10个相同大小的子帧,每个子帧又分为两个相同大小的时隙,即每个FDD无线帧帧含有20个相同大小的时隙,每个时隙为0.5ms.普通CP配置下,一个时隙包含7个连续的OFDM符号(Symbol). TDD类型无线帧结构 在TDD帧结构中,一个长度为10ms的无线帧由2个长度为5ms的半帧构成,每个半帧由5个长度为1ms的子帧构成,其中包括4个普通子帧和1

LTE学习之路(4)——概述(续)

[EPS承载] 基础知识——TFT 数据包过滤器:通常是在数据包传送过程中允许或阻止它们的通过.如果要完成数据包过滤,就要设置好规则来指定哪些类型的数据包被允许通过和哪些类型的数据包将会被阻止. TFT(Traffic Flow Template):是关联到EPS承载上的一个数据包过滤器的集合,分为上行过滤模版UL TFT(UpLink TFT)和下行过滤模版DL TFT(DownLink TFT). UL TFT是一组上行数据包过滤器,DL TFT是一组下行数据包过滤器.每一个专用承载都关联一

LTE学习之路(1)——移动通信技术发展历程

题记: 随着信息技术的发展,用户需求的日渐增多,移动通信技术已称为当代通信领域的发展潜力最大,市场前景最广的研究热点.目前,移动通信技术已经历了几代的发展. 一.第一代移动通信技术(1G)--模拟移动通信 起源于20世纪80年代,主要采用的是模拟调制技术与频分多址接入(FDMA)技术,这种技术的主要缺点是频谱利用率低,信令干扰话音业务.1G主要代表有:美国的先进的移动电话系统(AMPS).英国的全球接入通信系统(TACS)和日本的电报电话系统(NMT).1G移动通信基于模拟传输技术,其特点是业务

LTE学习之路(3)——概述(续)

[LTE协议栈的两个面] 用户面协议栈——负责用户数据传输 控制面协议栈——负责系统信令传输 用户面主要功能:头压缩.加密.调度.ARQ/HARQ 控制面主要功能: PDCH层完成加密与完整性保护: RLC和MAC层功能与用户面中的功能一致: RRC完成广播.寻呼.RRC连接管理.资源控制.移动性管理.UE测量报告与控制: NAS层完成核心网承载管理.鉴权及安全控制 [用户平面与控制平面协议栈中共有的LTE层2] LTE层2含有三种协议: PDCP(Packet Data Convergence

LTE学习之路(8)——信令流程

1 在LTE中,需要识别3个主要的同步需求 符号和帧定时的捕获,通过它来确定正确的符号起始位置(如设置DFT窗位置): 载波频率同步,需要它来减少或消除频率误差的影响(注:频率误差是由本地振荡器在发射端和接收端间的频率不匹配和UE移动导致的多普勒偏移造成的): 采样时钟的同步 2 两个物理信号 主同步信号(PSS,Primary Synchronization Signal) 和辅同步信号(SSS,Secondary Synchronization Signal) 注:对于这两个信号的检测,不仅