HDU 1575 Tr A(矩阵高速幂)

题目地址:HDU 1575

矩阵高速幂裸题。

初学矩阵高速幂。曾经学过高速幂。今天一看矩阵高速幂,原来其原理是一样的,这就好办多了。都是利用二分的思想不断的乘。仅仅只是把数字变成了矩阵而已。

代码例如以下:

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>

using namespace std;
const int mod=9973;
int n;
struct matrix
{
    int ma[20][20];
}init, res;
matrix Mult(matrix x, matrix y)
{
    matrix tmp;
    int i, j, k;
    for(i=0;i<n;i++)
    {
        for(j=0;j<n;j++)
        {
            tmp.ma[i][j]=0;
            for(k=0;k<n;k++)
            {
                tmp.ma[i][j]=(tmp.ma[i][j]+x.ma[i][k]*y.ma[k][j])%mod;
            }
        }
    }
    return tmp;
}
matrix Pow(matrix x, int k)
{
    matrix tmp;
    int i, j;
    for(i=0;i<n;i++)
    {
        for(j=0;j<n;j++)
        {
            tmp.ma[i][j]=(i==j);
        }
    }
    while(k)
    {
        if(k&1) tmp=Mult(tmp,x);
        x=Mult(x,x);
        k>>=1;
    }
    return tmp;
}
int main()
{
    int t, i, j, ans, k;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&k);
        for(i=0;i<n;i++)
        {
            for(j=0;j<n;j++)
            {
                scanf("%d",&init.ma[i][j]);
            }
        }
        res=Pow(init,k);
        ans=0;
        for(i=0;i<n;i++)
        {
            ans=(ans+res.ma[i][i])%mod;
        }
        printf("%d\n",ans);
    }
    return 0;
}
时间: 2024-12-11 10:27:22

HDU 1575 Tr A(矩阵高速幂)的相关文章

hdu 1575 Tr A(矩阵高速电源输入)

Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2977    Accepted Submission(s): 2217 Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input 数据的第一行是一个T,表示有T组数据. 每组数据的第一行有

hdu 1575 Tr A(矩阵快速幂入门)

Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2977    Accepted Submission(s): 2217 Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input 数据的第一行是一个T,表示有T组数据. 每组数据的第一行有

HDU 2604 Queuing,矩阵高速幂

题目地址:HDU 2604 Queuing 题意: 略 分析: 易推出:   f(n)=f(n-1)+f(n-3)+f(n-4) 构造一个矩阵: 然后直接上板子: /* f[i] = f[i-1] + f[i-3] + f[i-4] */ #include<cstdio> #include<cstring> using namespace std; const int N = 4; int L, M; struct mtx { int x[N+1][N+1]; mtx(){ mem

hdu 1575 try a 矩阵快速幂

#include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> #include<queue> #include<stack> #include<algorithm> #include<iostream> using namespace std; #define ll long long int const int m=9973; ll

HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出k,b,n,M,问( f(g(0)) + f(g(1)) + ... + f(g(n)) ) % M的值. 分析: 把斐波那契的矩阵带进去,会发现这个是个等比序列. 推倒: S(g(i)) = F(b) + F(b+k) + F(b+2k) + .... + F(b+nk) // 设 A = {1,1,

HDU 4965 Fast Matrix Calculation(矩阵高速幂)

HDU 4965 Fast Matrix Calculation 题目链接 矩阵相乘为AxBxAxB...乘nn次.能够变成Ax(BxAxBxA...)xB,中间乘n n - 1次,这样中间的矩阵一个仅仅有6x6.就能够用矩阵高速幂搞了 代码: #include <cstdio> #include <cstring> const int N = 1005; const int M = 10; int n, m; int A[N][M], B[M][N], C[M][M], CC[N

hdu 5318 The Goddess Of The Moon 矩阵高速幂

链接:http://acm.hdu.edu.cn/showproblem.php?pid=5318 The Goddess Of The Moon Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 438    Accepted Submission(s): 150 Problem Description Chang'e (嫦娥) is

HDU 2604 Queuing 矩阵高速幂

QueuingTime Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2483    Accepted Submission(s): 1169 Problem Description Queues and Priority Queues are data structures which are known to most computer s

hdu 4549 M斐波那契数列(矩阵高速幂,高速幂降幂)

http://acm.hdu.edu.cn/showproblem.php?pid=4549 f[0] = a^1*b^0%p,f[1] = a^0*b^1%p,f[2] = a^1*b^1%p.....f[n] = a^fib[n-1] * b^fib[n-2]%p. 这里p是质数,且a,p互素,那么我们求a^b%p,当b非常大时要对b降幂. 由于a,p互素,那么由费马小定理知a^(p-1)%p = 1.令b = k*(p-1) + b'.a^b%p = a^(k*(p-1)+b')%p =