No Pain No Game
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1769 Accepted Submission(s): 748
Problem Description
Life is a game,and you lose it,so you suicide.
But you can not kill yourself before you solve this problem:
Given you a sequence of number a1, a2, ..., an.They are also a permutation of 1...n.
You need to answer some queries,each with the following format:
If we chose two number a,b (shouldn‘t be the same) from interval [l, r],what is the maximum gcd(a, b)? If there‘s no way to choose two distinct number(l=r) then the answer is zero.
Input
First line contains a number T(T <= 5),denote the number of test cases.
Then follow T test cases.
For each test cases,the first line contains a number n(1 <= n <= 50000).
The second line contains n number a1, a2, ..., an.
The third line contains a number Q(1 <= Q <= 50000) denoting the number of queries.
Then Q lines follows,each lines contains two integer l, r(1 <= l <= r <= n),denote a query.
Output
For each test cases,for each query print the answer in one line.
Sample Input
1 10 8 2 4 9 5 7 10 6 1 3 5 2 10 2 4 6 9 1 4 7 10
Sample Output
5 2 2 4 3
Author
WJMZBMR
Source
2013 Multi-University Training Contest 3
Recommend
zhuyuanchen520 | We have carefully selected several similar problems for you: 5283 5282 5280 5279 5278
题意: 有N个数, 是 1~N的一个排列。有M个询问, 每次询问一个区间, 问从这个区间中,取两个数的最大的最大公约数。
题解:先把查询按右区间升序排序,在将数组按顺序插入,记录当前这个数的因子出现的位置,如果之前有出现则代表这两个因子出现的
位置之间有两个数的公共约数是它,用线段树维护区间约数最大值即可。
#include<cstring> #include<cstdio> #include<algorithm> #include<iostream> #include<cmath> #include<vector> #define lson idx<<1,l,mid #define rson idx<<1|1,mid+1,r #define N 50050 #define lc idx<<1 #define rc idx<<1|1 using namespace std; int n,q,flag; int a[N],tree[N*4]; int L[N],R[N]; int first[N],ans[N]; vector<int>vec; struct node { int id; int l,r; } Q[N]; bool cmp(node a,node b) { if(a.r==b.r) return a.l<b.l; return a.r<b.r; } ///求所有因子 void FJ(int x) { vec.clear(); for(int i=1; i*i<=x; i++) { if(x%i==0) { vec.push_back(i); if(x/i!=i) vec.push_back(x/i); } } } void push_up(int idx) { tree[idx]=max(tree[lc],tree[rc]); } void build(int idx,int l,int r) { tree[idx]=0; if(l==r) { return; } int mid=(l+r)>>1; build(lson); build(rson); } void update(int idx,int l,int r,int x,int v) { //x处的值改为v if(l==r) { if(tree[idx]<v) tree[idx]=v; return; } int mid=(l+r)>>1; if(x<=mid)update(lson,x,v); else update(rson,x,v); push_up(idx); } int query(int idx,int l,int r,int x,int y) { if(l>=x&&y>=r) { return tree[idx]; } int ans=0; int mid=(l+r)>>1; if(x<=mid) { ans=max(ans,query(lson,x,y)); } if(y>mid) { ans=max(ans,query(rson,x,y)); } return ans; } void debug() { for(int i=0; i<vec.size(); i++) { printf("%d ",vec[i]); } cout<<endl; } int main() { //freopen("test.in","r",stdin); int t; scanf("%d",&t); while(t--) { scanf("%d",&n); for(int i=1; i<=n; i++) { scanf("%d",&a[i]); } scanf("%d",&q); for(int i=1; i<=q; i++) { scanf("%d%d",&Q[i].l,&Q[i].r); Q[i].id=i; } sort(Q+1,Q+1+q,cmp); memset(first,0,sizeof first); memset(L,0,sizeof L); memset(R,0,sizeof R); build(1,1,n); ///预处理相同有区间的左右区间 int f=1; L[Q[f].r]=f; R[Q[f].r]=f; for(int i=1; i<=q;) { while(Q[i].r==Q[f].r&&i<=q) { i++; } L[Q[f].r]=f; R[Q[f].r]=i-1; f=i; } for(int i=1; i<=n; i++) { //FJ(a[i]); //debug(); int xx=a[i]; for(int k=1; k*k<=xx; k++) { if(xx%k==0) { if(!first[k]) { first[k]=i; } else { update(1,1,n,first[k],k); first[k]=i; } int kk=xx/k; if(k!=kk) { if(!first[kk]) { first[kk]=i; } else { update(1,1,n,first[kk],kk); first[kk]=i; } } } } int x=L[i],y=R[i]; if(x==0||y==0)continue; for(int j=x; j<=y; j++) { int k=Q[j].l; if(k==i) { ans[Q[j].id]=0; } else { ans[Q[j].id]=query(1,1,n,k,i); } } if(y==q)break; } for(int i=1; i<=q; i++) { printf("%d\n",ans[i]); } } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。