Linux下0号进程的前世(init_task进程)今生(idle进程)----Linux进程的管理与调度(五)

日期 内核版本 架构 作者 GitHub CSDN
2016-05-12 Linux-4.5 X86 & arm gatieme LinuxDeviceDrivers Linux进程管理与调度-之-进程的创建

前言



Linux下有3个特殊的进程,idle进程(PID = 0), init进程(PID = 1)和kthreadd(PID = 2)

* idle进程由系统自动创建, 运行在内核态

idle进程其pid=0,其前身是系统创建的第一个进程,也是唯一一个没有通过fork或者kernel_thread产生的进程。完成加载系统后,演变为进程调度、交换

* init进程由idle通过kernel_thread创建,在内核空间完成初始化后, 加载init程序, 并最终用户空间

由0进程创建,完成系统的初始化. 是系统中所有其它用户进程的祖先进程

Linux中的所有进程都是有init进程创建并运行的。首先Linux内核启动,然后在用户空间中启动init进程,再启动其他系统进程。在系统启动完成完成后,init将变为守护进程监视系统其他进程。

* kthreadd进程由idle通过kernel_thread创建,并始终运行在内核空间, 负责所有内核线程的调度和管理

它的任务就是管理和调度其他内核线程kernel_thread, 会循环执行一个kthread的函数,该函数的作用就是运行kthread_create_list全局链表中维护的kthread, 当我们调用kernel_thread创建的内核线程会被加入到此链表中,因此所有的内核线程都是直接或者间接的以kthreadd为父进程

我们下面就详解分析0号进程的前世(init_task)今生(idle)

idle的创建



在smp系统中,每个处理器单元有独立的一个运行队列,而每个运行队列上又有一个idle进程,即有多少处理器单元,就有多少idle进程。

idle进程其pid=0,其前身是系统创建的第一个进程,也是唯一一个没有通过fork()产生的进程。在smp系统中,每个处理器单元有独立的一个运行队列,而每个运行队列上又有一个idle进程,即有多少处理器单元,就有多少idle进程。系统的空闲时间,其实就是指idle进程的”运行时间”。既然是idle是进程,那我们来看看idle是如何被创建,又具体做了哪些事情?

我们知道系统是从BIOS加电自检,载入MBR中的引导程序(LILO/GRUB),再加载linux内核开始运行的,一直到指定shell开始运行告一段落,这时用户开始操作Linux。

0号进程上下文信息–init_task描述符



init_task是内核中所有进程、线程的task_struct雏形,在内核初始化过程中,通过静态定义构造出了一个task_struct接口,取名为init_task,然后在内核初始化的后期,通过rest_init()函数新建了内核init线程,kthreadd内核线程

  • 内核init线程,最终执行/sbin/init进程,变为所有用户态程序的根进程(pstree命令显示),即用户空间的init进程

    开始的init是有kthread_thread创建的内核线程, 他在完成初始化工作后, 转向用户空间, 并且生成所有用户进程的祖先

  • 内核kthreadd内核线程,变为所有内核态其他守护线程的父线程。

    它的任务就是管理和调度其他内核线程kernel_thread, 会循环执行一个kthread的函数,该函数的作用就是运行kthread_create_list全局链表中维护的kthread, 当我们调用kernel_thread创建的内核线程会被加入到此链表中,因此所有的内核线程都是直接或者间接的以kthreadd为父进程

所以init_task决定了系统所有进程、线程的基因, 它完成初始化后, 最终演变为0号进程idle, 并且运行在内核态

内核在初始化过程中,当创建完init和kthreadd内核线程后,内核会发生调度执行,此时内核将使用该init_task作为其task_struct结构体描述符,当系统无事可做时,会调度其执行, 此时该内核会变为idle进程,让出CPU,自己进入睡眠,不停的循环,查看init_task结构体,其comm字段为swapper,作为idle进程的描述符。

idle的运行时机

idle 进程优先级为MAX_PRIO-20。早先版本中,idle是参与调度的,所以将其优先级设低点,当没有其他进程可以运行时,才会调度执行 idle。而目前的版本中idle并不在运行队列中参与调度,而是在运行队列结构中含idle指针,指向idle进程,在调度器发现运行队列为空的时候运行,调入运行

简言之, 内核中init_task变量就是是进程0使用的进程描述符,也是Linux系统中第一个进程描述符,init_task并不是系统通过kernel_thread的方式(当然更不可能是fork)创建的, 而是由内核黑客静态创建的.

该进程的描述符在[init/init_task](http://lxr.free-electrons.com/source/init/init_task.c?v=4.5#L17

)中定义,代码片段如下

/* Initial task structure */
struct task_struct init_task = INIT_TASK(init_task);
EXPORT_SYMBOL(init_task);

init_task描述符使用宏INIT_TASK对init_task的进程描述符进行初始化,宏INIT_TASK在include/linux/init_task.h文件中

init_task是Linux内核中的第一个线程,它贯穿于整个Linux系统的初始化过程中,该进程也是Linux系统中唯一一个没有用kernel_thread()函数创建的内核态进程(内核线程)

在init_task进程执行后期,它会调用kernel_thread()函数创建第一个核心进程kernel_init,同时init_task进程继续对Linux系统初始化。在完成初始化后,init_task会退化为cpu_idle进程,当Core 0的就绪队列中没有其它进程时,该进程将会获得CPU运行。新创建的1号进程kernel_init将会逐个启动次CPU,并最终创建用户进程!

备注:core0上的idle进程由init_task进程退化而来,而AP的idle进程则是BSP在后面调用fork()函数逐个创建的

进程堆栈init_thread_union



init_task进程使用init_thread_union数据结构描述的内存区域作为该进程的堆栈空间,并且和自身的thread_info参数公用这一内存空间空间,

请参见 http://lxr.free-electrons.com/source/include/linux/init_task.h?v=4.5#L193

    .stack          = &init_thread_info,

而init_thread_info则是一段体系结构相关的定义,被定义在[/arch/对应体系/include/asm/thread_info.h]中,但是他们大多数为如下定义

#define init_thread_info        (init_thread_union.thread_info)
#define init_stack              (init_thread_union.stack)

其中init_thread_union被定义在init/init_task.c, 紧跟着前面init_task的定义

/*
 * Initial thread structure. Alignment of this is handled by a special
 * linker map entry.
 */
union thread_union init_thread_union __init_task_data =
        { INIT_THREAD_INFO(init_task) };

我们可以发现init_task是用INIT_THREAD_INFO宏进行初始化的, 这个才是我们真正体系结构相关的部分, 他与init_thread_info定义在一起,被定义在/arch/对应体系/include/asm/thread_info.h中,以下为x86架构的定义

参见

http://lxr.free-electrons.com/source/arch/x86/include/asm/thread_info.h?v=4.5#L65

#define INIT_THREAD_INFO(tsk)                   \
{                                                   .task           = &tsk,                     .flags          = 0,                        .cpu            = 0,                        .addr_limit     = KERNEL_DS,            }

其他体系结构的定义请参见

/arch/对应体系/include/asm/thread_info.h

架构 定义
x86 arch/x86/include/asm/thread_info.h
arm64 arch/arm64/include/asm/thread_info.h

init_thread_info定义中的__init_task_data表明该内核栈所在的区域位于内核映像的init data区,我们可以通过编译完内核后所产生的System.map来看到该变量及其对应的逻辑地址

cat System.map-3.1.6 | grep init_thread_union

进程内存空间



init_task的虚拟地址空间,也采用同样的方法被定义

由于init_task是一个运行在内核空间的内核线程, 因此其虚地址段mm为NULL, 但是必要时他还是需要使用虚拟地址的,因此avtive_mm被设置为init_mm

参见

http://lxr.free-electrons.com/source/include/linux/init_task.h?v=4.5#L202

.mm             = NULL,                                           .active_mm      = &init_mm,                                     \

其中init_mm被定义为init-mm.c中,参见 http://lxr.free-electrons.com/source/mm/init-mm.c?v=4.5#L16

struct mm_struct init_mm = {
    .mm_rb          = RB_ROOT,
    .pgd            = swapper_pg_dir,
    .mm_users       = ATOMIC_INIT(2),
    .mm_count       = ATOMIC_INIT(1),
    .mmap_sem       = __RWSEM_INITIALIZER(init_mm.mmap_sem),
    .page_table_lock =  __SPIN_LOCK_UNLOCKED(init_mm.page_table_lock),
    .mmlist         = LIST_HEAD_INIT(init_mm.mmlist),
    INIT_MM_CONTEXT(init_mm)
};

0号进程的演化


rest_init创建init进程(PID =1)和kthread进程(PID=2)



Linux在无进程概念的情况下将一直从初始化部分的代码执行到start_kernel,然后再到其最后一个函数调用rest_init

大致是在vmlinux的入口startup_32(head.S)中为pid号为0的原始进程设置了执行环境,然后原是进程开始执行start_kernel()完成Linux内核的初始化工作。包括初始化页表,初始化中断向量表,初始化系统时间等。

从rest_init开始,Linux开始产生进程,因为init_task是静态制造出来的,pid=0,它试图将从最早的汇编代码一直到start_kernel的执行都纳入到init_task进程上下文中。

这个函数其实是由0号进程执行的, 他就是在这个函数中, 创建了init进程和kthreadd进程

这部分代码如下:

参见

http://lxr.free-electrons.com/source/init/main.c?v=4.5#L386

static noinline void __init_refok rest_init(void)
{
    int pid;

    rcu_scheduler_starting();
    smpboot_thread_init();

    /*
    * We need to spawn init first so that it obtains pid 1, however
    * the init task will end up wanting to create kthreads, which, if
    * we schedule it before we create kthreadd, will OOPS.
    */
    kernel_thread(kernel_init, NULL, CLONE_FS);
    numa_default_policy();
    pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
    rcu_read_lock();
    kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
    rcu_read_unlock();
    complete(&kthreadd_done);

    /*
    * The boot idle thread must execute schedule()
    * at least once to get things moving:
    */
    init_idle_bootup_task(current);
    schedule_preempt_disabled();
    /* Call into cpu_idle with preempt disabled */
    cpu_startup_entry(CPUHP_ONLINE);
}
  1. 调用kernel_thread()创建1号内核线程, 该线程随后转向用户空间, 演变为init进程
  2. 调用kernel_thread()创建kthreadd内核线程。
  3. init_idle_bootup_task():当前0号进程init_task最终会退化成idle进程,所以这里调用init_idle_bootup_task()函数,让init_task进程隶属到idle调度类中。即选择idle的调度相关函数。
  4. 调用schedule()函数切换当前进程,在调用该函数之前,Linux系统中只有两个进程,即0号进程init_task和1号进程kernel_init,其中kernel_init进程也是刚刚被创建的。调用该函数后,1号进程kernel_init将会运行!
  5. 调用cpu_idle(),0号线程进入idle函数的循环,在该循环中会周期性地检查。

创建kernel_init



在rest_init函数中,内核将通过下面的代码产生第一个真正的进程(pid=1):

kernel_thread(kernel_init, NULL, CLONE_FS);

这个进程就是着名的pid为1的init进程,它会继续完成剩下的初始化工作,然后execve(/sbin/init), 成为系统中的其他所有进程的祖先。

但是这里我们发现一个问题, init进程应该是一个用户空间的进程, 但是这里却是通过kernel_thread的方式创建的, 哪岂不是式一个永远运行在内核态的内核线程么, 它是怎么演变为真正意义上用户空间的init进程的?

1号kernel_init进程完成linux的各项配置(包括启动AP)后,就会在/sbin,/etc,/bin寻找init程序来运行。该init程序会替换kernel_init进程(注意:并不是创建一个新的进程来运行init程序,而是一次变身,使用sys_execve函数改变核心进程的正文段,将核心进程kernel_init转换成用户进程init),此时处于内核态的1号kernel_init进程将会转换为用户空间内的1号进程init。户进程init将根据/etc/inittab中提供的信息完成应用程序的初始化调用。然后init进程会执行/bin/sh产生shell界面提供给用户来与Linux系统进行交互。

调用init_post()创建用户模式1号进程。

关于init其他的信息我们这次先不研究,因为我们这篇旨在探究0号进程的详细过程,

创建kthreadd



在rest_init函数中,内核将通过下面的代码产生第一个kthreadd(pid=2)

pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);

它的任务就是管理和调度其他内核线程kernel_thread, 会循环执行一个kthread的函数,该函数的作用就是运行kthread_create_list全局链表中维护的kthread, 当我们调用kernel_thread创建的内核线程会被加入到此链表中,因此所有的内核线程都是直接或者间接的以kthreadd为父进程

0号进程演变为idle


    /*
    * The boot idle thread must execute schedule()
    * at least once to get things moving:
    */
    init_idle_bootup_task(current);
    schedule_preempt_disabled();
    /* Call into cpu_idle with preempt disabled */
    cpu_startup_entry(CPUHP_ONLINE);

因此我们回过头来看pid=0的进程,在创建了init进程后,pid=0的进程调用 cpu_idle()演变成了idle进程。

0号进程首先执行init_idle_bootup_task, 让init_task进程隶属到idle调度类中。即选择idle的调度相关函数。

这个函数被定义在kernel/sched/core.c中,如下

void init_idle_bootup_task(struct task_struct *idle)
{
    idle->sched_class = &idle_sched_class;
}

接着通过schedule_preempt_disabled来执行调用schedule()函数切换当前进程,在调用该函数之前,Linux系统中只有两个进程,即0号进程init_task和1号进程kernel_init,其中kernel_init进程也是刚刚被创建的。调用该函数后,1号进程kernel_init将会运行

这个函数被定义在kernel/sched/core.c中,如下

/**
* schedule_preempt_disabled - called with preemption disabled
*
* Returns with preemption disabled. Note: preempt_count must be 1
*/
void __sched schedule_preempt_disabled(void)
{
    sched_preempt_enable_no_resched();
    schedule();
    preempt_disable();
}

最后cpu_startup_entry**调用cpu_idle_loop(),0号线程进入idle函数的循环,在该循环中会周期性地检查**

cpu_startup_entry定义在kernel/sched/idle.c

 void cpu_startup_entry(enum cpuhp_state state)
{
    /*
    * This #ifdef needs to die, but it‘s too late in the cycle to
    * make this generic (arm and sh have never invoked the canary
    * init for the non boot cpus!). Will be fixed in 3.11
    */
#ifdef CONFIG_X86
    /*
    * If we‘re the non-boot CPU, nothing set the stack canary up
    * for us. The boot CPU already has it initialized but no harm
    * in doing it again. This is a good place for updating it, as
    * we wont ever return from this function (so the invalid
    * canaries already on the stack wont ever trigger).
    */
    boot_init_stack_canary();
#endif
    arch_cpu_idle_prepare();
    cpu_idle_loop();
}

其中cpu_idle_loop就是idle进程的事件循环,定义在kernel/sched/idle.c

整个过程简单的说就是,原始进程(pid=0)创建init进程(pid=1),然后演化成idle进程(pid=0)。init进程为每个从处理器(运行队列)创建出一个idle进程(pid=0),然后演化成/sbin/init。

idle的运行与调度


idle的workload–cpu_idle_loop



从上面的分析我们知道,idle在系统没有其他就绪的进程可执行的时候才会被调度。不管是主处理器,还是从处理器,最后都是执行的cpu_idle_loop()函数

其中cpu_idle_loop就是idle进程的事件循环,定义在kernel/sched/idle.c,早期的版本中提供的是cpu_idle,但是这个函数是完全依赖于体系结构的,不利用架构的分层,因此在新的内核中更新为更加通用的cpu_idle_loop,由他来调用体系结构相关的代码

所以我们来看看cpu_idle_loop做了什么事情。

因为idle进程中并不执行什么有意义的任务,所以通常考虑的是两点

  1. 节能
  2. 低退出延迟。

其代码如下

/*
 * Generic idle loop implementation
 *
 * Called with polling cleared.
 */
static void cpu_idle_loop(void)
{
        while (1) {
                /*
                 * If the arch has a polling bit, we maintain an invariant:
                 *
                 * Our polling bit is clear if we‘re not scheduled (i.e. if
                 * rq->curr != rq->idle).  This means that, if rq->idle has
                 * the polling bit set, then setting need_resched is
                 * guaranteed to cause the cpu to reschedule.
                 */

                __current_set_polling();
                quiet_vmstat();
                tick_nohz_idle_enter();

                while (!need_resched()) {
                        check_pgt_cache();
                        rmb();

                        if (cpu_is_offline(smp_processor_id())) {
                                rcu_cpu_notify(NULL, CPU_DYING_IDLE,
                                               (void *)(long)smp_processor_id());
                                smp_mb(); /* all activity before dead. */
                                this_cpu_write(cpu_dead_idle, true);
                                arch_cpu_idle_dead();
                        }

                        local_irq_disable();
                        arch_cpu_idle_enter();

                        /*
                         * In poll mode we reenable interrupts and spin.
                         *
                         * Also if we detected in the wakeup from idle
                         * path that the tick broadcast device expired
                         * for us, we don‘t want to go deep idle as we
                         * know that the IPI is going to arrive right
                         * away
                         */
                        if (cpu_idle_force_poll || tick_check_broadcast_expired())
                                cpu_idle_poll();
                        else
                                cpuidle_idle_call();

                        arch_cpu_idle_exit();
                }

                /*
                 * Since we fell out of the loop above, we know
                 * TIF_NEED_RESCHED must be set, propagate it into
                 * PREEMPT_NEED_RESCHED.
                 *
                 * This is required because for polling idle loops we will
                 * not have had an IPI to fold the state for us.
                 */
                preempt_set_need_resched();
                tick_nohz_idle_exit();
                __current_clr_polling();

                /*
                 * We promise to call sched_ttwu_pending and reschedule
                 * if need_resched is set while polling is set.  That
                 * means that clearing polling needs to be visible
                 * before doing these things.
                 */
                smp_mb__after_atomic();

                sched_ttwu_pending();
                schedule_preempt_disabled();
        }
}

循环判断need_resched以降低退出延迟,用idle()来节能。

默认的idle实现是hlt指令,hlt指令使CPU处于暂停状态,等待硬件中断发生的时候恢复,从而达到节能的目的。即从处理器C0态变到 C1态(见 ACPI标准)。这也是早些年windows平台上各种”处理器降温”工具的主要手段。当然idle也可以是在别的ACPI或者APM模块中定义的,甚至是自定义的一个idle(比如说nop)。

  1.idle是一个进程,其pid为0。

  2.主处理器上的idle由原始进程(pid=0)演变而来。从处理器上的idle由init进程fork得到,但是它们的pid都为0。

  3.Idle进程为最低优先级,且不参与调度,只是在运行队列为空的时候才被调度。

  4.Idle循环等待need_resched置位。默认使用hlt节能。

  希望通过本文你能全面了解linux内核中idle知识。

idle的调度和运行时机



我们知道, linux进程的调度顺序是按照 rt实时进程(rt调度器), normal普通进程(cfs调度器),和idel的顺序来调度的

那么可以试想如果rt和cfs都没有可以运行的任务,那么idle才可以被调度,那么他是通过怎样的方式实现的呢?

由于我们还没有讲解调度器的知识, 所有我们只是简单讲解一下

在normal的调度类,cfs公平调度器sched_fair.c中, 我们可以看到

static const struct sched_class fair_sched_class = {
.next = &idle_sched_class,

也就是说,如果系统中没有普通进程,那么会选择下个调度类优先级的进程,即使用idle_sched_class调度类进行调度的进程

当系统空闲的时候,最后就是调用idle的pick_next_task函数,被定义在/kernel/sched/idle_task.c中

参见

http://lxr.free-electrons.com/source/kernel/sched/idle_task.c?v=4.5#L27

static struct task_struct *pick_next_task_idle(struct rq *rq)
{
        schedstat_inc(rq, sched_goidle);
        calc_load_account_idle(rq);
        return rq->idle;    //可以看到就是返回rq中idle进程。
}

这idle进程在启动start_kernel函数的时候调用init_idle函数的时候,把当前进程(0号进程)置为每个rq运行队列的的idle上。

rq->curr = rq->idle = idle;

这里idle就是调用start_kernel函数的进程,就是0号进程。

idle进程总结



系统允许一个进程创建新进程,新进程即为子进程,子进程还可以创建新的子进程,形成进程树结构模型。整个linux系统的所有进程也是一个树形结构。树根是系统自动构造的(或者说是由内核黑客手动创建的),即在内核态下执行的0号进程,它是所有进程的远古先祖。

在smp系统中,每个处理器单元有独立的一个运行队列,而每个运行队列上又有一个idle进程,即有多少处理器单元,就有多少idle进程。

  1. idle进程其pid=0,其前身是系统创建的第一个进程(我们称之为init_task),也是唯一一个没有通过fork或者kernel_thread产生的进程。
  2. init_task是内核中所有进程、线程的task_struct雏形,它是在内核初始化过程中,通过静态定义构造出了一个task_struct接口,取名为init_task,然后在内核初始化的后期,在rest_init()函数中通过kernel_thread创建了两个内核线程内核init线程,kthreadd内核线程, 前者后来通过演变,进入用户空间,成为所有用户进程的先祖, 而后者则成为所有内核态其他守护线程的父线程, 负责接手内核线程的创建工作
  3. 然后init_task通过变更调度类为sched_idle等操作演变成为idle进程, 此时系统中只有0(idle), 1(init), 2(kthreadd)3个进程, 然后执行一次进程调度, 必然切换当前进程到到init
时间: 2024-10-29 19:05:55

Linux下0号进程的前世(init_task进程)今生(idle进程)----Linux进程的管理与调度(五)的相关文章

linux下的shell命令的编写,以及java如何调用linux的shell命令(java如何获取linux上的网卡的ip信息)

程序员都很懒,你懂的! 最近在开发中,需要用到服务器的ip和mac信息.但是服务器是架设在linux系统上的,对于多网口,在获取ip时就产生了很大的问题.下面是在windows系统上,java获取本地ip的方法.贴代码: package com.herman.test; import java.net.InetAddress; /** * @see 获取计算机ip * @author Herman.Xiong * @date 2014年5月16日 09:35:38 */ public class

Linux下1号进程的前世(kernel_init)今生(init进程)----Linux进程的管理与调度(六)

日期 内核版本 架构 作者 GitHub CSDN 2016-05-29 Linux-4.5 X86 & arm gatieme LinuxDeviceDrivers Linux进程管理与调度-之-进程的创建 前言 Linux下有3个特殊的进程,idle进程(PID=0), init进程(PID=1)和kthreadd(PID=2) * idle进程由系统自动创建, 运行在内核态 idle进程其pid=0,其前身是系统创建的第一个进程,也是唯一一个没有通过fork或者kernel_thread产

Linux下2号进程的kthreadd--Linux进程的管理与调度

copy from:https://blog.csdn.net/gatieme/article/details/51566690 Linux下有3个特殊的进程,idle进程(PID = 0), init进程(PID = 1)和kthreadd(PID = 2) * idle进程由系统自动创建, 运行在内核态 idle进程其pid=0,其前身是系统创建的第一个进程,也是唯一一个没有通过fork或者kernel_thread产生的进程.完成加载系统后,演变为进程调度.交换 * init进程由idle

一次有趣的Linux下.Net Core与C语言的合作开发体验:生成Linux标准的用户密码串

最近在项目进程中遇上了Linux用户验证的问题,想着怎么样通过Linux本地用户进行安全校验,于是去查了些资料. Linux的密码存储 查阅资料后发现早期的Linux存储在/etc/password文件中,因为/etc/password权限控制较弱,现在已经不使用了,所以我们这里就不讨论这个文件了,较新的Linux发行版,密码都是存储在/etc/shadow文件中,因为/etc/shadow是管理员权限访问,安全性高出许多,我们可以使用命令来查看文件: $ sudo cat /etc/shado

Linux 下編輯 PDF 檔的工具(PDF editor under Linux)(转载)

转自:http://www.gtwang.org/2011/05/linux-pdf.html PDF 檔雖然是一個跨平台的檔案格式,但 Adobe 只有提供免費的 Adobe Reader,要看 PDF 檔是沒有問題,但常常我們會需要對 PDF 檔做一些簡單的編輯,光靠 Adobe Reader 就沒有辦法處理,例如取出 PDF 檔中的某幾頁,或是將兩個 PDF 檔合併成一個 PDF 檔等,這些動作雖然簡單,但是 Adobe Reader 卻都沒有提供,有時也是很困擾. 這裡介紹一些在 Lin

linux下 单引号 双引号 反引号的区别

" '' `` 单引号 '' 相当于吧里面的内容直接输出.并不会考虑里面是否有变量命令等双引号 "" 只认变量 命令会直接输出反引号 `` 两种都认   实例: a="hello" [localhost.localdomain 10:16:09]$echo 'echo %a'echo %a [localhost.localdomain 10:15:19]$echo "echo $a"echo hello [localhost.local

Linux进程管理与调度-之-目录导航【转】

转自:http://blog.csdn.net/gatieme/article/details/51456569 版权声明:本文为博主原创文章 && 转载请著名出处 @ http://blog.csdn.net/gatieme 目录(?)[-] 项目链接 进程的描述 进程的创建 进程的加载与运行 进程的退出 进程的调度 调度普通进程-完全公平调度器CFS 日期 内核版本 架构 作者 GitHub CSDN 2016-07-21 Linux-4.6 X86 & arm gatieme

linux下进程、端口号相互查看方法

linux下通过进程名查看其占用端口: 1.先查看进程pid ps -ef | grep 进程名 2.通过pid查看占用端口 netstat -nap | grep 进程pid 例:通过nginx进程查看对应的端口号 #查看nginx进程pid: 命令: ps -ef | grep nginx 结果: root 9836 1 0 Jul11 ? 00:00:00 nginx: master process /usr/local/nginx/sbin/nginx nobody 9841 9836

kthreadd-linux下2号进程

参考: 1. linux常见进程与内核线程 2. Linux下2号进程的kthreadd--Linux进程的管理与调度(七) kthreadd:这种内核线程只有一个,它的作用是管理调度其它的内核线程.它在内核初始化的时候被创建,会循环运行一个叫做kthreadd的函数,该函数的作用是运行kthread_create_list全局链表中维护的kthread.可以调用kthread_create创建一个kthread,它会被加入到kthread_create_list链表中,同时kthread_cr