经典的线段树求解逆序数问题。
运用了一个逆序数的性质,如果一个数从首位换到尾位,这其逆序数将减少y[i],增加n-y[i]-1。
举个例子说明,如果一个排列3 1 2 0 4本来三前面应该有三个数比他小的,但是现在3在首位,则说明3产生的逆序数有3个,而将3换到尾位后,就说明比3大的都在3前面了,所以此时3的逆序数有n-y[i]-1(5-3-1 = 1).
线段树的话,先建立一个空树,每次不断的查询插入。就是一开始先查询树中有多少个数比当前要插入的值大,就说明改数拥有多少个逆序数。查询后,在把改数插入,不断重复。就可以得出答案。
#include <iostream> #include <algorithm> #include <cstdio> #include <cstring> using namespace std; #define L(x) (x<<1) #define R(x) (x<<1|1) #define lson lft,mid,rt<<1 #define rson mid+1,rht,rt<<1|1 #define MID(a,b) (a+((b-a)>>1)) const int MAXN = 5000+10; struct Node{ int lft,rht,val; int mid(){return MID(lft,rht);} }; Node tree[4*MAXN]; int y[MAXN],n; class Segtree{ public: void Build(int lft,int rht,int rt){ tree[rt].lft = lft; tree[rt].rht = rht; tree[rt].val = 0; if(lft != rht){ int mid = tree[rt].mid(); Build(lson); Build(rson); } } void Update(int pos,int rt){ int lft = tree[rt].lft,rht = tree[rt].rht; if(lft == rht)tree[rt].val++; else{ int mid = tree[rt].mid(); if(pos <= mid)Update(pos,L(rt)); if(pos > mid)Update(pos,R(rt)); tree[rt].val = tree[L(rt)].val + tree[R(rt)].val; } } int Query(int st,int ed,int rt){ int lft = tree[rt].lft,rht = tree[rt].rht; if(st <= lft&&rht <= ed)return tree[rt].val; else{ int mid = tree[rt].mid(); int sum1 = 0,sum2 = 0; if(st <= mid) sum1 += Query(st,ed,L(rt)); if(ed > mid) sum2 += Query(st,ed,R(rt)); return sum1 + sum2; } } }; int main() { while(~scanf("%d",&n)){ Segtree seg; seg.Build(0,n-1,1); int sum = 0; for(int i = 0;i < n;++i){ scanf("%d",&y[i]); sum += seg.Query(y[i],n-1,1); seg.Update(y[i],1); } int ret = sum; for(int i = 0;i < n;++i){ sum += (n-y[i]-1) - y[i]; ret = min(ret,sum); } printf("%d\n",ret); } return 0; }
HDU Minimum Inversion Number
时间: 2024-10-06 01:16:23