HDU-1423 最长公共上升子序列(LCIS)

问题描述:

给定两个字符串x, y, 求它们公共子序列s, 满足si < sj ( 0 <= i < j < |s|).要求S的长度是所有条件序列中长度最长的.
做过最长公共子序列应该更容易明白了。

定义状态d[i][j]表示以a数组的前i个元素,b数组的前j个元素并且以b[j]为结尾的LCIS的长度。
首先:a[i] != b[j]时, d[i][j] = d[i-1][j]; 因为 d[i][j] 是以 b[j] 为结尾的LCIS,如果 d[i][j] > 0 那么就说明 a[1] .... a[i] 中必然有一个元素 a[k] 等于 b[j]。因为 a[k] != a[i],那么 a[i] 对 d[i][j] 没有贡献,于是我们不考虑它照样能得出 d[i][j] 的最优值。所以在 a[i] != b[j] 的情况下必然有 d[i][j] = d[i-1][j]。这一点参考LCS的处理方法。

当a[i]==b[j]时, 首先,这个等于起码保证了长度为1的LCIS。然后我们还需要去找一个最长的且能让b[j]接在其末尾的LCIS。之前最长的LCIS在哪呢?首先我们要去找的d数组的第一维必然是i-1。因为i已经拿去和b[j]配对去了,不能用了。第二维需要枚举 b[1] ... b[j-1]了,因为你不知道这里面哪个最长且哪个小于 b[j]。

状态转移方程:

a[i] != b[j]: d[i][j]=d[i-1][j] ;

a[i] == b[j]: d[i][j]=max(d[i-1][k]) + 1 ; (1<= k <= j-1)

不难看到,这是一个时间复杂度为O(n^3)的DP,离平方还有一段距离。

但是,这个算法最关键的是,如果按照一个合理的递推顺序,max(d[i-1][k])的值我们可以在之前访问 d[i][k] 的时候通过维护更新一个max变量得到。怎么得到呢?首先递推的顺序必须是状态的第一维在外层循环,第二维在内层循环。也就是算好了 d[1][n2] 再去算 d[2][1]。 如果按照这个递推顺序我们可以在每次外层循环的开始加上令一个max变量为0,然后开始内层循环。当a[i]>b[j]的时候令max = d[i-1][j]。如果循环到了a[i] == b[j]的时候,则令 d[i][j] = max+1。 最后答案是 d[n1][1] ... d[n1][n2]的最大值。
举个例子
a={1, 4, 2, 5, -12} b ={5, -12, 1, 2, 4, 5}

 if(a[i] == b[j])
    d[i][j] = mx + 1;
 else  if(a[i] > b[j] && mx < d[i-1][j])
            mx = d[i-1][j];
 //只有当a[i] > b[j]时,才更新mx, 保证了所求序列是上升的。

仔细看表格会发现: 若d[i][j] > 0 的话,那么在数组a前i个元素中一定存在ak等于b[j]. 否则说明前i个a元素中没有与b[j]相同的元素。

//O(n^3) DP 实现

#include<bits/stdc++.h>
using namespace std;
int m1,m2,a[505],b[505],maxx,top=1,flag;
int f[505][505];

int main()
{
    cin>>m1;
    for(int i=1;i<=m1;i++)
        cin>>a[i];
    cin>>m2;
    for(int j=1;j<=m2;j++)
        cin>>b[j];

    for(int i=1;i<=m1;i++)
    {
        for(int j=1;j<=m2;j++)
        {
            f[i][j]=f[i-1][j];
            if(a[i]==b[j])
            {
                int Max=0;
                for(int k=1;k<=j-1;k++)
                    if(b[j]>b[k])
                        Max=max(Max,f[i-1][k]);
                f[i][j]=Max+1;
            }
        }
    }
    cout<<f[m1][m2]<<endl;
    maxx=f[m1][m2];
    for(int i=1;i<=m1;i++)
    {
        for(int j=1;j<=m2;j++)
        {
            if(f[i][j]==top)
            {
                cout<<a[i]<<" ";
                flag=1;
                break;
            }
        }
        if(flag==1)
        {
            top++;  flag=0;
        }
        if(top>maxx)
            break;
    }
    return 0;
}
//O(n^2) DP 实现

#include<iostream>
#include<cstdio>
#include<string.h>
#include<cstring>
#include<math.h>
using namespace std;

int n1, n2, t, k;
int a[505], b[505], d[505][505];
int dp()
{
    int mx;
    for(int i = 1; i <= n1; i++)
    {
        mx = 0;
        for(int j = 1; j <= n2; j++)
        {
            d[i][j] = d[i-1][j];
            if(a[i] > b[j] && mx < d[i-1][j]) mx = d[i-1][j];
            else if(a[i] == b[j])
                d[i][j] = mx + 1;
        }
    }
    mx = 0;
    for(int i = 1; i <= n2; i++)
    {
        if(d[n1][i] > mx)
             mx = d[n1][i];
    }
    return mx;
}
int main()
{
    cin >> t;
    while(t--)
    {
        scanf("%d", &n1);
        for(int i = 1; i <= n1; i++) scanf("%d", &a[i]);
        scanf("%d", &n2);
        for(int i = 1; i <= n2; i++) scanf("%d", &b[i]);
        memset(d, 0, sizeof(d));
        int ans = dp();
        printf("%d\n", ans);
        if(t) printf("\n");
    }
    return 0;
}

原文地址:https://www.cnblogs.com/tham/p/10084370.html

时间: 2024-10-03 10:33:27

HDU-1423 最长公共上升子序列(LCIS)的相关文章

最长公共上升子序列(LCIS)ZOJ 2432

立方算法: #include<cstdio> #include<iostream> #include<algorithm> #include<cstring> #define M 505 using namespace std; typedef long long LL; LL a[M],b[M]; int dp[M][M]; int main() { //freopen("in.txt","r",stdin); in

HDU 4512 最长公共上升子序列

各种序列复习: (1)最长上升子序列. 1.这个问题用动态规划就很好解决了,设dp[i]是以第i个数字结尾的上升子序列的最长长度.那么方程可以是dp[i]=max(dp[j]+1).(j<i).复杂度为O(n^2); 2.另外有一个该经典问题的O(nlogn)算法. 首先知道,当求dp[i]时,如果出现a[k]<a[j],而dp[k]=dp[j]时,应当优先选k吧.那么,既然每次选的都是较小,就可以把字符串按照dp[t]=k这个子序列长度分类.当同样dp[t]=k时,记录下该长度的最小的a[p

动态规划——最长公共上升子序列LCIS

问题 给定两个序列A和B,序列的子序列是指按照索引逐渐增加的顺序,从原序列中取出若干个数形成的一个子集,若子序列的数值大小是逐渐递增的则为上升子序列,若A和B取出的两个子序列A1和B1是相同的,则A1/B1为A和B的公共子序列.求出A和B的最长公共上升子序列. 分析     结合最长公共子序列和最长上升子序列来解决这个问题,定义状态dp[i][j]表示A串中前i个字符和B串中前j个字符且以B[j]为结尾的最长公共上升子序列的长度.则有状态转移方程:[在进行动态规划状态的设计的时候,要简单.详尽的

最长公共上升子序列||LCIS

1 #include<cstdio> 2 #include<iostream> 3 #include<cstdlib> 4 #include<cmath> 5 #include<vector> 6 #include<algorithm> 7 #include<cstring> 8 #include<vector> 9 #include<map> 10 #include<stack> 11

HDU1423 最长公共上升子序列LCIS

Problem Description This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence. Input Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the

hdu 1423 最长上升递增子序列

1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 using namespace std; 5 6 const int maxn=505; 7 int a[maxn],b[maxn],dp[maxn]; 8 9 int main() 10 { 11 int t,n,m,i,j,k; 12 scanf("%d",&t); 13 while(t--) 14 { 15

HDU 4512 吉哥系列故事——完美队形I(LCIS最长公共上升子序列)

http://acm.hdu.edu.cn/showproblem.php?pid=4512 题意: 吉哥这几天对队形比较感兴趣. 有一天,有n个人按顺序站在他的面前,他们的身高分别是h[1], h[2] ... h[n],吉哥希望从中挑出一些人,让这些人形成一个新的队形,新的队形若满足以下三点要求,则称之为完美队形: 1.挑出的人保持他们在原队形的相对顺序不变: 2.左右对称,假设有m个人形成新的队形,则第1个人和第m个人身高相同,第2个人和第m-1个人身高相同,依此类推,当然,如果m是奇数,

HDU ACM 4512 吉哥系列故事——完美队形I -&gt;LCIS最长公共递增子序列

分析:最长公共递增子序列,把数据反向存储一遍,求正反两组数据的LCIS.另外注意边界的条件判断.还有如果取出的新队列有奇数个人或偶数个人要单独判断. #include<iostream> using namespace std; #define max(a,b) ((a)>(b)?(a):(b)) int dp[202]; int a[202]; int b[202]; int LCIS(int n) { int i,j,maxlen,ans; memset(dp,0,sizeof(dp

Codeforces 10D LCIS 求最长公共上升子序列及输出这个子序列 dp

题目链接:点击打开链接 题意: 给定n长的一个序列 再给定k长的一个序列 求LCIS并输出这个子序列 如有多解输出任意解.. = - = 敲的时候听着小曲儿pre的含义还没有想清楚,万万没想到就过了... #include<stdio.h> #include<iostream> #include<string.h> #include<set> #include<vector> #include<map> #include<mat

最长公共上升子序列(LCIS)问题的O(n^2)解法

J - 病毒 Time Limit:3000MS     Memory Limit:131072KB     64bit IO Format:%lld & %llu Submit Status Practice CSU 1120 Appoint description:  System Crawler  (2015-01-04) Description 你有一个日志文件,里面记录着各种系统事件的详细信息.自然的,事件的时间戳按照严格递增顺序排列(不会有两个事件在完全相同的时刻发生). 遗憾的是,