[arc102E]Stop. Otherwise...[容斥+二项式定理]

题意

你 \(n\) 个完全相同骰子,每个骰子有 \(k\) 个面,分别标有 \(1\) 到 \(k\) 的所有整数。对于\([2,2k]\) 中的每一个数 \(x\) 求出有多少种方案满足任意两个骰子的和都不为 \(x\) 的方案数。

分析

  • 对于每个 \(x\) ,我们需要单独考虑当 \(i\le x\) 时, \(i\) 和 \(x-i\) 只能出现一个。我们将他们看成同一种权值,数量记为 \(w\) ,剩余权值数量记位 \(cnt\) ,然后枚举有多少种特殊权值没出现 (\(ans\)) 并容斥:
    \[ans_i=2^{w-i}\sum\limits_{j=i}^w(-1)^{j-i}\binom{n+cnt-j-1}{cnt-j-1}\binom{w}{j}\binom{j}{i}\]
    这样可以 \(O(n^3)\) 求解。
  • 考虑我们枚举 \(ans\) 的过程中和 \(j\) 这一项有关的内容:

    \[\begin{aligned}val_j&=\sum_\limits{i=0}^j(-1)^{j-i}\binom{n+cnt-j-1}{cnt-j-1}\binom{w}{j}\binom{j}{i}2^{w-i}\\&=(-1)^j\binom{w}{j}\binom{n+cnt-j-1}{cnt-j-1}2^w\sum_{i=0}^j\binom{j}{i}(-1)^{i}2^{-i}\\&=(-1)^j\binom{w}{j}\binom{n+cnt-j-1}{cnt-j-1}2^{w-j}\sum_{i=0}^j\binom{j}{i}(-1)^{i}2^{j-i}\\&=(-1)^j\binom{w}{j}\binom{n+cnt-j-1}{cnt-j-1}2^{w-j}(2-1)^j\end{aligned} \]

    发现可以 \(O(1)\) 求一个 \(val\) ,于是复杂度优化到了 \(O(n^2)\)

  • 注意当 \(x\) 为偶数时候单独讨论 \(\frac{x}{2}\) 这个权值。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
#define rep(i, a, b) for(int i = a; i <= b; ++i)
#define pb push_back
#define re(x) memset(x, 0, sizeof x)
inline int gi() {
    int x = 0,f = 1;
    char ch = getchar();
    while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
    while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
    return x * f;
}
template <typename T> inline void Max(T &a, T b){if(a < b) a = b;}
template <typename T> inline void Min(T &a, T b){if(a > b) a = b;}
const int N = 4007, mod = 998244353;
int n, K, ans;
int fac[N], invfac[N], inv[N], bin[N], suf0[N], suf1[N];
int C(int n, int m) {
    if(n < m) return 0;
    return 1ll * fac[n] * invfac[m] % mod * invfac[n - m] % mod;
}
void add(int &a, int b) {
    a += b;if(a >= mod) a -= mod;
}
void solve(int n, int cnt, int w) {
    for(int i = 0; i <= w; ++i)
        add(ans, 1ll * (i & 1 ? mod - 1: 1) * C(n + cnt - i - 1, cnt - i - 1) % mod * C(w, i)% mod * bin[w - i] % mod);
}
int main() {
    K = gi(), n = gi();
    inv[1] = fac[0] = invfac[0] = 1, bin[0] = 1;
    rep(i, 1, 4000) {
        if(i ^ 1) inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
        fac[i] = 1ll * fac[i - 1] * i % mod;
        invfac[i] = 1ll * invfac[i - 1] * inv[i] % mod;
        bin[i] = 1ll * bin[i - 1] * 2 % mod;
    }
    rep(k, 2, 2 * K) {
        ans = 0;
        int w = min(k / 2, K - (k - 1) / 2), cnt = K - w;
        if(k % 2 == 0 && K >= k / 2) {
            solve(n, cnt, w - 1);
            solve(n - 1, cnt, w - 1);
        }
        else solve(n, cnt, w);
        printf("%d\n", ans);
    }
    return 0;
}

原文地址:https://www.cnblogs.com/yqgAKIOI/p/10204393.html

时间: 2024-11-02 03:58:18

[arc102E]Stop. Otherwise...[容斥+二项式定理]的相关文章

【题解】Gnutella Chessmaster(容斥+下降幂+二项式定理)

[题解]Gnutella Chessmaster(容斥+下降幂+二项式定理) Gnutella Chessmaster 绝世好题! 题目大意:有一个\(n\times n\)的棋盘,现在要在上面放\(k\)个Bishop,每个Bishop打两条对角线,问你放Bishop的方案数,方案不同当且仅当一个位置上存在主教的状态不同.你要对于每个k输出方案. prop1 对于这个棋盘二分图染色((1,1)=白),显然白色格子上面的Bishop打不到黑色格子上面的Bishop,于是我们可以分开算黑白格子的方

4487[Jsoi2015]染色问题 容斥+组合

4487: [Jsoi2015]染色问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 211  Solved: 127[Submit][Status][Discuss] Description 棋盘是一个n×m的矩形,分成n行m列共n*m个小方格.现在萌萌和南南有C种不同颜色的颜料,他们希望把棋盘用这些颜料染色,并满足以下规定:1.  棋盘的每一个小方格既可以染色(染成C种颜色中的一种) ,也可以不染色.2.  棋盘的每一行至少有一个小方格被染

Min-Max 容斥的证明

这里有 Min-Max 容斥的证明以及唯一一道博主做过的例题... 上个结论: \[Min\{S\}=\sum_{T\subseteq S,T\not=\varnothing}(-1)^{|T|-1}Max\{T\} \] \[Max\{S\}=\sum_{T\subseteq S,T\not=\varnothing}(-1)^{|T|-1}Min\{T\} \] 具体的证明其实很简单...我们考虑证明其中一个(以第一个为例),另一个可以用类似证法得到结论.咱直接考虑集合内元素不重的情况,因为相

「总结」容斥。二.反演原理

二.反演原理 0.综述 说一下个人对反演的理解. 反演是一种手段,一种处理已知信息和未知信息关系的手段,用来得到未知信息的方式.也就是以一种既定的手段在较小的时间复杂度内用已知的信息得到未知的信息. 还有$zsq$学长更加浅显的解读. 反演一般就是把一个好看但难算的式子转化成一个难看且难算的式子在转化为一个难看但好算的式子. 先来一个裸一点的反演 下面要说我知道的四种反演. 子集反演,针对的是集合交并的容斥. 二项式反演,针对组合原理的容斥. 莫比乌斯反演,针对约数和倍数的容斥. 斯特林反演,针

POJ 2773 Happy 2006 二分+容斥(入门

题目链接:点击打开链接 题意: 输入n ,k 求与n互质的第k个数(这个数可能>n) 思路: solve(mid)表示[1,mid]中有多少个和n互质,然后二分一下最小的mid 使得互质个数==k solve(x) 实现: 与n互质的个数=所有数-与n不互质的数=所有数-(与n有一个因子-与n有2个因子的+与n有3个因子的) 状压n的因子个数,然后根据上面的公式容斥得到. #include <stdio.h> #include <iostream> #include <

hdu1695(莫比乌斯)或欧拉函数+容斥

题意:求1-b和1-d之内各选一个数组成数对,问最大公约数为k的数对有多少个,数对是有序的.(b,d,k<=100000) 解法1: 这个可以简化成1-b/k 和1-d/k 的互质有序数对的个数.假设b=b/k,d=d/k,b<=d.欧拉函数可以算出1-b与1-b之内的互质对数,然后在b+1到d的数i,求每个i在1-b之间有多少互质的数.解法是容斥,getans函数参数的意义:1-tool中含有rem位置之后的i的质因子的数的个数. 在 for(int j=rem;j<=factor[i

HDU 4135 Co-prime(容斥+数论)

Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5526    Accepted Submission(s): 2209 Problem Description Given a number N, you are asked to count the number of integers between A and B

hdu 5664 Lady CA and the graph(树的点分治+容斥)

题意: 给你一个有n个点的树,给定根,叫你找第k大的特殊链 .特殊的链的定义:u,v之间的路径,经过题给的根节点. 题解:(来自BC官方题解) 对于求第k大的问题,我们可以通过在外层套一个二分,将其转化为求不小于mid的有多少个的问题. 接下来我们讨论如何求树上有多少条折链的长度不小于k. 我们考虑常规的点分治(对于重心,求出其到其他点的距离,排序+单调队列),时间复杂度为O(nlog^2n),但是这只能求出普通链的数量. 我们考虑将不属于折链的链容斥掉.也即,我们需要求出有多少条长度不小于mi

数学(容斥计数):LNOI 2016 方

Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1)个格点,我们需要做的就是找出这些格点形 成了多少个正方形(换句话说,正方形的四个顶点都是格点).但是这个问题对于我们来说太难了,因为点数太多 了,所以上帝删掉了这(N+1)×(M+1)中的K个点.既然点变少了,问题也就变简单了,那么这个时候这些格点组成 了多少个正方形呢? Input 第一行三个整数