AtCoder Regular Contest 093 E: Bichrome Spanning Tree(生成树)

Bichrome Spanning Tree

题意:

给出一个n个点,m条边的无向连通图,现在要给每条边染色,可以染成黑色或者白色。

现在要求在染色完毕后,找出一个至少包含一条黑边和一条白边的最小生成树,使其权值和为X。

问这样的染色方案有多少个?

题解:

题目要求找出一个至少包含一条黑边和白边的最小生成树,那么可能就会存在这种情况:原图的最小生成树所有边都为同色,那这不是我们要求的;我们这时就会去掉一条权值最大的边,再添一条边进来。

那么我们就可以算出包含指定边的最小生成树,方法就是先加我们指定的边,然后从小到大加边。

现在来解决这个问题,我们可以先求出原图的最小生成树,设其权值和为T,那么我们就对接下来的几种情况进行分析:

1.T>X 这种情况方案数为0;

2.T=X 这种情况下,因为边权可能会相等,所以可以继续进行删边加边的操作,直至第一种情况;

3.T<X 这种情况,我们就继续删边加边,找出使T=X相等的边的个数。

最后根据找到边的个数统计一下就好了:

对于第二种情况,设使T=X的边个数为a,其余边为b,那么答案就是(2^a-2)*2^b;

对于第三种情况,一开始使T<X的边只能同色,则方案数为2,则总答案为(2*2^a-2)*2^b,(a,b含义与上相同)。

代码如下:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 10005,MOD = 1e9+7;
int n,m;
ll X;
struct Edge{
    int u,v,w;
    bool operator < (const Edge& A)const{
        return w<A.w;
    }
}e[N];
int f[N];
int find(int x){
    return f[x]==x ? x :f[x]=find(f[x]);
}
ll Kruskal(int edge){
    ll sum = 0;
    for(int i=0;i<=n+1;i++) f[i]=i;
    int fx,fy;
    if(edge){
        fx=find(e[edge].u),fy=find(e[edge].v);
        f[fx]=fy;sum+=e[edge].w;
    }
    for(int i=1;i<=m;i++){
        if(i==edge) continue ;
        fx=find(e[i].u);fy=find(e[i].v);
        if(fx!=fy){
            f[fx]=fy;
            sum+=e[i].w;
        }
    }
    return sum;
}
ll qp(ll a,ll b){
    ll ans=1;
    while(b){
        if(b&1) ans=a*ans%MOD;
        a=a*a%MOD;
        b>>=1;
    }
    return ans ;
}
int main(){
    scanf("%d%d%lld",&n,&m,&X);
    for(int i=1;i<=m;i++)
        scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
    sort(e+1,e+m+1);
    ll t = Kruskal(0);
    if(t>X){cout<<0;return 0;}
    int cnt1=0,cnt2=0;
    for(int i=1;i<=m;i++){
        ll now = Kruskal(i);
        if(now==X) cnt1++;
        else if(now>X) cnt2++;
    }
    if(t==X) cout<<(qp(2,cnt1)-2)*qp(2,cnt2)%MOD;
    else cout<<((ll)2*qp(2,cnt1)-2)%MOD*qp(2,cnt2)%MOD;
    return 0;
}

原文地址:https://www.cnblogs.com/heyuhhh/p/10181912.html

时间: 2024-11-08 21:15:09

AtCoder Regular Contest 093 E: Bichrome Spanning Tree(生成树)的相关文章

AtCoder Regular Contest 098

AtCoder Regular Contest 098 C - Attention 题意 给定一个只包含"E","W"字符串,可以花一的花费使他们互相转换.选定一个位置,使位置左边的字符都变成E,右边都变成W所需要的最小花费. 分析 这题纯粹是签到题,做两个前缀和然后直接加就可以了. #include <iostream> #include <cmath> #include <cstring> #include <cstdi

AtCoder Regular Contest 095

AtCoder Regular Contest 095 C - Many Medians 题意: 有A,B两种匹萨和三种购买方案,买一个A,买一个B,买半个A和半个B,花费分别为a,b,c. 求买X个A和Y个B最小花费使多少. 分析: 明显的发现肯定买性价比更高的方案,分情况讨论一下,如果\(a+b<=2*c\),那么明显的先买足c到A,B中较小的一个,然后再比较一下剩下的那个的单价和\(2*c\)的大小. A[ans=] -->|a+b<=2*c| B(A*a+B*b) A -->

AtCoder Regular Contest 094

AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几次操作将三个数变为相同的数. 分析: 可以发现如果三个数的奇偶性相同直接加就可以了,对于奇偶性不同的,先把奇偶性相同的两个数都+1,然后按照相同的处理就可以了.可以证明没有更好的方案. #include <bits/stdc++.h> using namespace std; int a,b,c,

AtCoder Regular Contest 103

AtCoder Regular Contest 103 一些吐槽 参加的第一场\(ARC\):一个模拟 + 三个构造 没见过比这更令人感动的题型设置了(简直就是针对我(TAT)) . 感觉全场就我一个人\(E\)题WA了四遍才过....... C-//// 题目大意: 网址 给定一个串\(S\),要求修改一些字符,使得串满足以下条件: \(S_i = S_{i+2}\) \(S_1 \neq S_2\) . 问最少需要修改多少个字符. 题解: 无脑统计一下奇数和偶数格的每种种类. 然后在最大值和

AtCoder Regular Contest 063 E:Integers on a Tree

题目传送门:https://arc063.contest.atcoder.jp/tasks/arc063_c 题目翻译 给你一个树,上面有\(k\)个点有权值,问你是否能把剩下的\(n-k\)个点全部填上权值,使得每条边链接的两个点权值相差\(1\),如果可以做到需要输出任意一组方案. 题解 我们考虑每条边权值为\(1\)或\(-1\),那么相当于黑白染色一样,所有点权值的奇偶性也都是确定的.如果与读入的\(k\)个点中某个点相冲突了就\(GG\).另外每个点的取值范围都可以转化成一段区间\([

AtCoder Regular Contest 075 E - Meaningful Mean 树状数组求顺序对, 前缀和

题目链接: http://arc075.contest.atcoder.jp/tasks/arc075_c 题意: 给你一个序列和一个数k,求有多少对l,r,使得a[l]+a[l+1]+...+a[r]的算术平均数大于等于k 1≤N≤2×10^5 1≤K≤10^9 1≤ai≤10^9 思路: 首先对于所有数减去k,这样就不用除(r-l+1), 然后我们发现所求的就是有多少对l,r,使得sum[r]-sum[l-1] >= 0, sum是减去k之后的序列的前缀和 用树状数组对sum求有多少个顺序对

AtCoder Regular Contest 062 E - AtCoDeerくんと立方体づくり / Building Cubes with AtCoDeer

题目传送门:https://arc062.contest.atcoder.jp/tasks/arc062_c 题目大意: 给你\(N\)块正方形木板,每块木板四角有四种颜色(可以相同),木板中央有编号,求选出6块不同的板子,围成的本质不同的合法立方体的个数.一个合法立方体,当且仅当木板有编号的一面在外面,且立方体顶点处的三个颜色相同.由于编号的存在,木板可以有4种形态.两个立方体本质相同,当且仅当存在一种空间旋转方式,使得两个立方体一模一样(包括编号方向) 没想到这题巨暴力--当我们确定对面的两

AtCoder Regular Contest 072 E:Alice in linear land

题目传送门:https://arc072.contest.atcoder.jp/tasks/arc072_c 题目翻译 给你一个数组\(D\),然后给你一个操作序列\(d\),每次操作可以将\(D\)变成\(min(D,|D-d[i]|)\).假如这一个操作序列执行完了之后你的\(D\)变成\(0\)了,那么就称这个操作序列是合法的.现在有\(Q\)个询问,每个询问由一个\(q[i]\)表示,问你假如你可以把\(d[i]\)变成任意正整数,你能否将这个操作序列变成不合法的.\(N,Q\leqsl

AtCoder Regular Contest 075 E - Meaningful Mean(树状数组)

题目大意:求一个数组中,平均值不小于k的连续子序列个数 所有数减去k,算个前缀和出来,就变成二维数点问题了. 没有修改,离线的话就是CZL所说的"NOIP最喜欢的套路"了:倒着加进BIT,以权值为数组下标(权值BIT?233),询问比ai大的个数. PS:数组要从0开始算,不然会少算长度为1的连续子序列. #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio