题解报告:hdu 6440 Dream(费马小定理+构造)

解题思路:给定素数p,定义p内封闭的加法和乘法运算(运算封闭的定义:若从某个非空数集中任选两个元素(同一元素可重复选出),选出的这两个元素通过某种(或几种)运算后的得数仍是该数集中的元素,那么,就说该集合对于这种(或几种)运算是封闭的。),使得等式恒成立。

由费马小定理可得,∴,则

∴在模p的意义下,恒成立,且加法运算与乘法运算封闭。

即乘法运算满足

AC代码:

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 int t,p;
 4 int main(){
 5     while(cin>>t){
 6         while(t--){
 7             cin>>p;
 8             for(int i=0;i<p;++i)
 9                 for(int j=0;j<p;++j)
10                     printf("%d%c",(i+j)%p,j==p-1?‘\n‘:‘ ‘);
11             for(int i=0;i<p;++i)
12                 for(int j=0;j<p;++j)
13                     printf("%d%c",i*j%p,j==p-1?‘\n‘:‘ ‘);
14         }
15     }
16     return 0;
17 }

原文地址:https://www.cnblogs.com/acgoto/p/9617318.html

时间: 2024-11-05 17:27:38

题解报告:hdu 6440 Dream(费马小定理+构造)的相关文章

HDU6440 Dream(费马小定理+构造) -2018CCPC网络赛1003

题意: 给定素数p,定义p内封闭的加法和乘法,使得$(m+n)^p=m^p+n^p$ 思路: 由费马小定理,p是素数,$a^{p-1}\equiv 1(mod\;p)$ 所以$(m+n)^{p}\equiv (m+n)(mod\;p)$ $m^{p}\equiv m(mod\;p)$ $n^{p}\equiv n(mod\;p)$ 所以在模意义下,有$(m+n)^p=m^p+n^p$ 代码: #include<iostream> #include<cstdio> #include&

hdu 4704 Sum (费马小定理+快速幂)

//(2^n-1)%mod //费马小定理:a^n ≡ a^(n%(m-1)) * a^(m-1)≡ a^(n%(m-1)) (mod m) # include <stdio.h> # include <algorithm> # include <string.h> # define mod 1000000007 using namespace std; __int64 pow(__int64 n) { __int64 p=1,q=2; while(n) { if(n%

HDU - 1576(费马小定理求逆元)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 9278    Accepted Submission(s): 7452 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%99

hdu6440 Dream 2018CCPC网络赛C 费马小定理+构造

题目传送门 题目大意: 给定一个素数p,让你重载加法运算和乘法运算,使(m+n)p=mp+np,并且 存在一个小于p的q,使集合{qk|0<k<p,k∈Z} 等于集合{k|0<k<p,k∈Z}. 然后输出两个矩阵,第一个矩阵输出i+j的值,第二个矩阵输出i*j的值.(题意好难懂,你们怎么都看懂了!!) 思路: 由费马小定理得到,当p是质数的时候,ap-1 ≡ 1(mod p),两边同乘以a,也就是说当ap和a在取模p的时候相等 所以(m+n)p=m+n=mp+np(乘法为x*x%p

2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少时最少的个数,rb代表1最多时的个数.一张牌翻两次和两张牌翻一次 得到的奇偶性相同,所以结果中lb和最多的rb的奇偶性相同.如果找到了lb和rb,那么,介于这两个数之间且与这两个数奇偶性相同的数均可取到,然后在这个区间内求组合数相加(若lb=3,rb=7,则3,5,7这些情况都能取到,也就是说最后的

hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                         (全题文末) 知识点: 整数n有种和分解方法. 费马小定理:p是质数,若p不能整除a,则 a^(p-1) ≡1(mod p).可利用费马小定理降素数幂. 当m为素数,(m必须是素数才能用费马小定理) a=2时.(a=2只是题中条件,a可以为其他值) mod m =  *      //  k=

HDU 1098 Ignatius&#39;s puzzle 费马小定理+扩展欧几里德算法

题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为x可以任意取 那么不能总是满足 65|x 那么必须是 65 | (5*x^12 + 13 * x^4 + ak) 那么就是说 x^12 / 13 + x^4 / 5 + ak / 65 正好是一个整数 假设能找到满足的a , 那么将 ak / 65 分进x^12 / 13 + x^4 / 5中得到

hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)

题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速幂来解,不用说肯定wa,看题目的通过率也不高,我想会不会有啥坑啊.然而我就是那大坑,哈哈. 不说了,直接说题吧,先讨论k=1,2,3;时的解.这应该会解吧,不多说了: 从第四项开始f(4)=a^1+b^2;f(5)=a^2+b^3;f(6)=a^3+b^5......; 看出来了吧,a上的指数成斐波

HDU 4704 Sum( 费马小定理 )

HDU 4704 Sum( 费马小定理 ) 理解能力果然拙计,,题目看半天没懂什么意思. #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; #define MOD 1000000007 char str[100010]; LL fast_mod( LL a, int b) { LL res = 1; while( b )