理解量子信息

出品 | 新浪科技《科学大家》

  撰文 | 袁岚峰,中国科学技术大学化学博士,中国科学技术大学合肥微尺度物质科学国家实验室副研究员,科技与战略风云学会会长。 

  近年来,你肯定看到了越来越多与“量子”有关的科技新闻。2016年8月16日,我国发射世界上第一颗量子科学实验卫星“墨子号”,更是全球轰动。但你如果想了解量子科学,在网络上看到的又大多是各种玄而又玄、莫名其妙的说法,什么“没有人懂得量子力学”啦,“超时空的瞬间作用”啦,“上帝不掷骰子”啦,越看越糊涂。你不禁会嘀咕:也许这么高深的东西,本来就超出了我的理解范围?

“墨子号”量子卫星发射

  对此,本文想说的是:

  不要放弃治疗!

  好啦,这是开个玩笑。实际的意思是,量子科学是完全可以理解的,绝不是什么无法言传的东西。只要认真阅读本文,我相信你一定可以对这门学科得到相当深入的理解。

  深入到什么程度呢?至少可以超过绝大多数的媒体记者和吃瓜群众。以后再看到相关的新闻,你就会明白说的是什么事,背景是什么,具有什么样的意义了。毕竟,科学的本质是朴实无华的,任何道理都可以向人解释清楚。如果你厌倦了种种故弄玄虚的炒作,真心想学习一些“干货”,那么本文绝对是你的菜。

  当然,完全读懂本文并不是一件像喝“鸡汤”那样容易的事。全文近4万字,你可能需要分几次才能读完。而且这篇文章讲的是货真价实的科学原理,真要透彻理解,还是需要具有一定的基础,并集中注意力去思考的。需要什么样的基础呢?也许是高中的水平……如果你真的很用心去读,说不定初中也行!(小学生:不要歧视我们!)

  咳咳,无论你的基础是什么样的,只要认真阅读和思考本文,你肯定会有所收获。好,让我们开始这场量子之旅。扣好安全带,我们要发车了!

  一、“量子”是什么?

  量子科学之所以显得神秘,首先这个名字就是一大原因。

  看到“量子”这个词,许多人在“不明觉厉”之余,第一反应就是把它理解成某种粒子。但是只要是上过中学的人,都知道我们日常见到的物质是由原子组成的,原子又是由原子核与电子组成的,原子核是由质子和中子组成的。那么量子究竟是个什么鬼?难道是比原子、电子更小的粒子吗?

  其实不是。量子跟原子、电子根本不能比较大小,因为它的本意是一个数学概念。正如“5”是一个数字,“3个苹果”是一个实物,你问“5”和“3个苹果”哪个大,这让人怎么回答?正确的回答只能是:它们不是同一范畴的概念,无法比较。

  量子这个数学概念的意思究竟是什么呢?就是“离散变化的最小单元”。

  什么叫“离散变化”?我们统计人数时,可以有一个人、两个人,但不可能有半个人、1/3个人。我们上台阶时,只能上一个台阶、两个台阶,而不能上半个台阶、1/3 个台阶。这些就是“离散变化”。对于统计人数来说,一个人就是一个量子。对于上台阶来说,一个台阶就是一个量子。如果某个东西只能离散变化,我们就说它是“量子化”的。

上台阶

  跟“离散变化”相对的叫做“连续变化”。例如你在一段平路上,你可以走到1米的位置,也可以走到1.1米的位置,也可以走到1.11米的位置,如此等等,中间任何一个距离都可以走到,这就是“连续变化”。

  显然,离散变化和连续变化在日常生活中都大量存在,这两个概念本身都很容易理解。那么,为什么“量子”这个词会变得如此重要呢?

  因为人们发现,离散变化是微观世界的一个本质特征

  微观世界中的离散变化包括两类,一类是物质组成的离散变化,一类是物理量的离散变化。

  先来看第一类,物质组成的离散变化。例如光是由一个个光子组成的,你不能分出半个光子、1/3个光子,所以光子就是光的量子。阴极射线是由一个个电子组成的,你不能分出半个电子、1/3个电子,所以电子就是阴极射线的量子。

  在这种情况下,你似乎可以拿量子去跟原子、电子比较了,但这并没有多大意义,因为它是随你的问题而变的。原子、电子、质子、中子、中微子这些词本身就对应某些粒子,而量子这个词在不同的语境下对应不同的粒子(如果它对应粒子的话)。并没有某种粒子专门叫做“量子”!

  再来看第二类,物理量的离散变化。例如氢原子中电子的能量只能取-13.6 eV(eV 是“电子伏特”,一种能量单位)或者它的1/4、1/9、1/16 等等,总之就是-13.6 eV除以某个自然数的平方(-13.6/n2 eV,n可以取1、2、3、4、5等),而不能取其他值,例如-10 eV、-20 eV。我们不好说氢原子中电子能量的量子是什么(因为不是等间距的变化),但会说氢原子中电子的能量是量子化的,位于一个个“能级”上面。每一种原子中电子的能量都是量子化的,这是一种普遍现象。

氢原子能级

  发现离散变化是微观世界的一个本质特征后,科学家创立了一门准确描述微观世界的物理学理论,就是“量子力学”。现在你可以明白,这个名称是怎么来的,它其实是为了强调离散变化在微观世界中的普遍性。量子力学出现后,人们把传统的牛顿力学称为“经典力学”。

  对普通民众来说,量子力学听起来似乎很前沿。但对相关专业(物理、化学)的研究者来说,量子力学是个很古老的理论,——已经超过一个世纪了!

  量子力学的起源是在1900年,德国科学家普朗克(Max Planck)在研究“黑体辐射”问题时,发现必须把辐射携带的能量当作离散变化的,才能推出跟实验一致的公式。在此基础上,爱因斯坦(Albert Einstein)、玻尔(Niels H. D . Bohr)、德布罗意(Louis V. de Broglie)、海森堡(Werner K.  Heisenberg)、薛定谔(Erwin R.  J. A.  Schrodinger)、狄拉克(Paul A.  M. Dirac)等人提出了一个又一个新概念,一步一步扩展了量子力学的应用范围。到1930年代,量子力学的理论大厦已经基本建立起来,能够对微观世界的大部分现象做出定量描述了。

  二、无处不在的量子力学

  量子力学和相对论是二十世纪的两大科学革命,对人类的世界观产生了强烈的震撼。但论公众中的知名度,量子力学似乎比相对论低得多。原因可能在于,相对论主要是由爱因斯坦一个人创立的,孤胆英雄的形象易于记忆和传播,而量子力学的主要贡献者有好几位,没有一个独一无二的代言人。爱因斯坦和相对论称得上妇孺皆知,而听说过量子力学中的“薛定谔的猫”、“海森堡测不准原理”这些词的人,已经算是科学发烧友了。

  但是,大多数人不知道的是,论应用的范围和研究者的人数,量子力学远远超过相对论。也就是说,相对论是一个名气较大而用得较少的理论,量子力学是一个名气较小而用得较多的理论。为什么会这样?看看这两种理论发挥作用的条件,就明白了。

  相对论在物体以接近光速运动时和强引力场条件下具有基础的重要性。可是日常生活中有多少机会遇到这些情况呢?大多数情况下,我们研究的对象还是在以低速运动,地球的引力场也不强。所以目前相对论的应用,局限在宇宙学、重元素的化学、原子钟、全球定位系统等少数领域。

  而另外一边,描述微观世界必须用量子力学,宏观物质的性质又是由其微观结构决定的。因此,不仅研究原子、分子、激光这些微观对象时必须用量子力学,而且研究宏观物质的导电性、导热性、硬度、晶体结构、相变等性质时也必须用量子力学。

  许多最基本的问题,是量子力学出现后才能回答的。例如:

  为什么原子能保持稳定,例如氢原子中的电子不落到原子核上?(因为氢原子中电子的能量是量子化的,最低只能取-13.6 eV,如果落到原子核上就变成负无穷,低于这个值了。)

原子模型

  为什么原子能形成分子,例如两个氢原子H聚成一个氢气分子H2

  为什么原子有不同的组合方式,例如碳原子能组合成石墨、金刚石、足球烯、碳纳米管、石墨烯?为什么食盐NaCl会形成离子晶体?

  为什么有些物质很稳定,而有些物质容易发生化学反应?

  为什么有些物质例如铜能导电,有些物质例如塑料不导电?为什么有些物质例如硅是半导体?为什么有些物质例如水银在低温下变成超导体?。

  为什么会有相变,例如水在0摄氏度以下结冰,0-100摄氏度之间是液体,100摄氏度以上气化?

  为什么改变钢铁的组成,能制造出各种特种钢?

  为什么激光器和发光二极管能够发光?

  为什么化学家能合成比大自然原有物质种类多得多的新物质?

  为什么通过观察宇宙中的光谱线能知道远处星球的元素组成?……

  现代社会硕果累累的技术成就,几乎全都与量子力学有关。你打开一个电器,导电性是由量子力学解释的,电源、芯片、存储器、显示器的工作原理是基于量子力学的。走进一个房间,钢铁、水泥、玻璃、塑料、纤维、橡胶的性质是由量子力学决定的。登上飞机、轮船、汽车,燃料的燃烧过程是由量子力学决定的。研制新的化学工艺、新材料、新药,都离不开量子力学。

  可以这么说:与其问量子力学能用来干什么,不如问它不能干什么!

  以上是就应用的范围比较量子力学和相对论。另一个观察的角度,是研究和学习的人数。现在所有的物理专业学生和许多相关专业(尤其是化学)的学生,都要学习量子力学,而学习广义相对论的只有理论物理、天文学等专业的学生(学习狭义相对论的学生还是很多的)。

  量子力学的研究活跃度也大 大高于相对论。在媒体报道中你会发现,量子领域日新月异,相对论领域的大新闻却是验证爱因斯坦100年前预测的引力波!

双黑洞合并产生引力波

  三、方兴未艾的量子信息

  既然量子力学出现已经超过了一个世纪,为什么最近在媒体上变得如此火热?回答是:量子力学与信息科学的交叉学科——量子信息。

  这两门学科为什么可以交叉起来?因为对于信息科学来说,量子力学是一种可资利用的数学框架。量子信息的目的,就是利用量子力学的特性,实现经典信息科学中实现不了的功能,例如永远不会被破解的保密方法(就是后面要解释的“量子密码术”)、科幻电影中的“传送术”(是的,传送术原则上是可以实现的,它的专业名称叫做“量子隐形传态”)。

  正如经典的信息科学包括通信和计算两大主题,量子信息的研究内容也可以分成两大块:量子通信和量子计算。

量子信息学科内容

  量子信息的大发展,把量子变成了舆论热词。在科学界内部其实很少用“量子科技”这个说法,因为如前所述,现代社会的所有技术成果都离不开量子力学,哪里有不“量子”的科技呢?科学家们更喜欢用有明确定义的“量子力学”和“量子信息”等词汇。你在媒体上看到“量子科技”的时候,指的往往就是量子信息。

  四、微观世界运行的操作手册

  你可能听说过不少渲染量子力学如何难以理解的说法,如“连爱因斯坦都理解不了量子力学”,“费曼说,没有人理解量子力学”。但对初学者来说,这些说法有点误导,会让你以为量子力学是一种玄学、禅机,一种类似脑筋急转弯或者诡辩的东西。

  实际上,量子力学是一套清晰的数学框架,可以比作微观世界运行的一本操作手册。全世界有数以百万计的科技人员熟悉这本操作手册,就像全世界有数以百万计的管道工熟悉管道操作一样。根据这本操作手册,我们能对微观世界的运行做出精确的预测,跟实验符合得极好,常常准确到小数点后第9位甚至更多。

英国物理学家狄拉克的名著《量子力学原理》

  那么难理解的是什么呢?是这本操作手册“为什么”是这样,这是个哲学层面的问题。而这本操作手册本身,是十分清楚的。好比你拿到《九阴真经》,虽然不明白里面很多地方为什么这么写,但你照着练就能成为武林高手。

  从信息科学的角度看来,量子力学中能够利用的是三个非常违反宏观世界日常经验的要点:叠加、测量和纠缠。我们不妨称之为“三大奥义”。这不是说量子力学中只有这三个奥义,当然还有其他的,只是跟信息科学的关系不是那么大,本文中就不介绍了。

  这三大奥义虽然违反“常识”,但微观世界的许多实验早已验证了它们的正确性。在阅读下文时,每当你感到“这怎么可能”、“这不是胡说八道吗”的时候,请记住,这些原理不是某个科学家的心血来潮向壁虚构,而是已经经过近百年来的无数实验反复证明的,其应用范围几乎涉及我们身边所有事物。所以,在目前的认识范围内,科学界把这些原理视为真理。

  如果你想问“如果这些理论是错的会怎么样”,回答是:你的电视就开不了机,手机就通不了信,计算机就算不了东西,灯管就发不了光。所以,你希望这些理论是错的,还是对的呢?

  下面我来具体解释这“三大奥义”,其中要用到一些数学符号,——因为这是最容易理解的方式。如果用日常语言来描述,会多费很多口舌,还说得不清不楚。许多文章令人越看越糊涂,就是这个原因。而用数学语言来描述,就能准确简洁地了解这“三大奥义”。

  如果你真心想理解量子信息,超出吃瓜群众的水平,你就一定要跨越这个心理障碍,勇敢地面对数学。这样做了以后,你就会发现,其实并不难,你完全可以做到!

原文地址:https://www.cnblogs.com/xiongwei/p/9910447.html

时间: 2024-10-10 08:32:16

理解量子信息的相关文章

理解统计信息(3/6):谁创建和管理统计信息?在性能调优中,统计信息的作用。

在理解统计信息(2/6):直方图 中,我们讨论了直方图,密度,还有SQL Server如何用统计信息做基数预估(cardinality estimation).这篇文章会讨论统计信息如何被创建,还有统计信息在性能调优中的重要性. 有2类统计信息,索引统计信息和列统计信息.索引统计信息是索引创建的一部分(建立索引会自动创建索引统计信息).在where条件列被引用或查询的group by子句里包含列,列统计信息都会由SQL Server自动创建. 有数据库属性设置里,可以设置数据库是否自动创建统计信

理解统计信息(2/6):直方图

在理解统计信息(1/6):密度里,我们讨论了在统计里存储的密度信息.这篇文章会讨论下直方图.我们再次创建SalesOrderDetail表的副本,并在上面建立2个索引. 1 USE StatisticsDB 2 GO 3 SELECT * INTO SalesOrderDetail FROM AdventureWorks2008r2.Sales.SalesOrderDetail 4 CREATE UNIQUE CLUSTERED INDEX ix_SalesOrderDetailID ON Sa

理解统计信息(6/6):统计信息汇总贴

在帮助优化器选择正确的执行计划,统计信息是一个重要因素.因此,我们在处理性能问题时,要足够重视统计信息.可能是对统计信息知识及其相关机制的缺乏,忽略统计信息往往是造成性能问题的根源. 查询优化器在每一步使用统计信息判断返回的行数.在执行计划里的预估行数信息是基于列上的可用统计信息计算而来的.统计信息会给我们列上数据分布信息.没有统计信息,查询优化器不能判断不同计划的效率.通过使用统计信息里的内容,查询优化器在访问数据的时候就可以做出正确选择. 在SQL Server里存储的统计信息包括密度和直方

理解统计信息(4/6):自动更新统计信息的阀值——人为更新统计信息的重要性

在理解统计信息(3/6):谁创建和管理统计信息?在性能调优中,统计信息的作用里我们讨论了统计信息的自动创建和自动更新.我们真的需要人为维护统计信息来保持性能最优?答案是肯定的,这取决与你的工作量.SQL Server只在达到阀限值时进行统计信息的自动更新.当大量的Insert/Update/Delete操作发生时,内建的自动更新统计信息不能持续保证性能的最优. 经过一系列的Insert/Update/Delete后,统计信息可能不会是最新.如果SQL Server查询优化器在表里需要指定列的统计

理解统计信息(5/6):如何检测过期的统计信息

在 理解统计信息(4/6):自动更新统计信息的阀值——人为更新统计信息的重要性 里,我们讨论了自动更新统计信息的阀值,这个阀值在某些情况下,基于自动更新的统计信息还是可以获得最优的执行计划的.在大多数情况下,人为更新统计信息可以获得更好的性能.这个文章,我们可以来看下如何检测过期的统计信息. 在SQL Server 2005以后的版本里,SQL Server使用ColModCtr 对统计的主要列对象进行跟踪.但在 SQL server 2005或SQL server 2008里没有对应的DMV进

理解统计信息(0/6):密度

在日常生活中,我们用统计信息来采取决定.SQL Server优化器也用同样的方式,使用统计信息来选择正确的执行计划.如果统计信息错误或过期,SQL Server可能就会选择错误的执行计划.在这个文章里,我们换个方式理解下统计信息. 查询优化器使用统计信息来判断每一步返回的行.执行计划里的估计行数信息是基于列的可用统计信息计算而来的.统计信息给我们列里数据分布情况.没有统计信息,查询优化器不呢个判断不同计划的效率.通过使用统计信息,查询优化器在访问数据时可以做出正确的选择. 在我们定义索引时,统计

理解管理信息系统信息是对客观世界各种事物的特征的反映,是关于客观事实的可通讯的知识。 知识,就是反映各种事物的信息进入人们大脑,对神经细胞产生作用后留下的痕迹。知识是由信息形成的。

1.信息与数据的区别是什么? 信息是客观事物属性的反映.是经过加工处理并对人类客观行为产生影响的数据表现形式. 数据是反映客观事物属性的记录,是信息的具体表现形式. 任何事物的属性都是通过数据来表示的.数据经过加式处理之后,成为信息.而信息必须通过数据才能传播,才能对人类有影响. 2.信息与知识的区别是什么? 信息是对客观世界各种事物的特征的反映,是关于客观事实的可通讯的知识. 知识,就是反映各种事物的信息进入人们大脑,对神经细胞产生作用后留下的痕迹.知识是由信息形成的. 3.举一个同一主题不同

正确理解PHP的错误信息大全

编译PHP脚本时,PHP编译器会尽其所能报告它遇到的第一个问题.这样就产 生一个问题:只有当错误出现时,PHP才能将它识别出来(本文后面对此问题进行了详细描述).正是由于这个缘故,编译器指出出错的那行,从表面上看来可能 语法正确无误,或者可能是根本就不存在的一行! 更好地理解错误信息可以大大节省确定并改正错误内容所花费的时间.因此,在本文中,我将努力阐明多种不同类型的PHP报错信息,以及在开发过程中如何正确理解各种报错信息的含义. 本文中所讲述的内容与您所应用的PHP的版本无关,因为本文所描述的

写给大家看的量子力学——量子通信、量子隐形传输技术简介

注:这篇文章是我在量子计算课程中交的大作业(其实老师想让我们写学术性文章的,我写的内容不是很符合要求,全篇没有一个公式,侧重科普介绍,也确实是很认真的去写的). 本文尝试对量子通信以及量子隐形传输技术进行科普介绍,力求通俗易懂.由于个人水平有限,如有不当或错误之处,望批评指正. 量子(Quantum) 量子是现代物理的重要概念.最早是M·普朗克在1900年提出的.他假设黑体辐射中的辐射能量是不连续的,只能取能量基本单位的整数倍.后来的研究表明,不但能量表现出这种不连续的分离化性质,其他物理量诸如