【图论】强连通分量

这里给出一个dalao炒鸡详细的解释:

https://www.cnblogs.com/stxy-ferryman/p/7779347.html#4073877

Tarjan算法

void Tarjan(int u)
{
    dfn[u]=low[u]=++num;
    st[++top]=u;//入栈
    vis[u]=1;//判断是否在栈中
    for(int i=h[u];i;i=e[i].next)
    {
        int v=e[i].to;
        if(!dfn[v])
        {
            Tarjan(v);
            low[u]=min(low[u],low[v]);//low表示u与其子孙到达的最小编号
        }
        else
        if(vis[v])//判断v是否在栈中
        low[u]=min(low[u],dfn[v]);
        //可以改成 min(low[u],low[v])
        //因为此时v的low和dfn还未修改
    }
    if(dfn[u]==low[u])
    {
        co[u]=++col;//属于第col个强连通分量
        while(st[top]!=u)
        {
            co[st[top]]=col;
            vis[st[top--]]=0;
        }
        --top;
    }
}

可用于缩点求在DAG上问题

原文地址:https://www.cnblogs.com/BrokenString/p/9688440.html

时间: 2024-10-06 21:47:51

【图论】强连通分量的相关文章

图论-强连通分量-Tarjan算法

有关概念: 如果图中两个结点可以相互通达,则称两个结点强连通. 如果有向图G的每两个结点都强连通,称G是一个强连通图. 有向图的极大强连通子图(没有被其他强连通子图包含),称为强连通分量.(这个定义在百科上和别的大神的博客中不太一样,暂且采用百科上的定义) Tarjan算法的功能就是求有向图中的强连通分量 思路: 定义DFNi存放访问到i结点的次序(时间戳),Lowi存放i结点及向i下方深搜到的结点中能追溯到的访问次序最小的结点的访问次序(即这些结点回溯上去能找到的最小的DFN值),找到未被访问

『图论』有向图强连通分量的Tarjan算法

在图论中,一个有向图被成为是强连通的(strongly connected)当且仅当每一对不相同结点u和v间既存在从u到v的路径也存在从v到u的路径.有向图的极大强连通子图(这里指点数极大)被称为强连通分量(strongly connected component). 比如说这个有向图中,点\(1,2,4,5,6,7,8\)和相应边组成的子图就是一个强连通分量,另外点\(3,9\)单独构成强连通分量. Tarjan算法是由Robert Tarjan提出的用于寻找有向图的强连通分量的算法.它可以在

图论--有向图强连通分量的标记及缩点模板

有向图中在若两点之间可以互相到达,则称这两点强连通,如果一个点集内的所有点都可以互相到达,那么这个点集就是图的一个强连通分量,而我们需要找出有向图中的所有极大强连通分量,于是就用Tarjan算法进行强连通,并将一个连通块缩成一个点,这样就可以形成了一张有向无环图,对解题会很有帮助. 找强连通分量的方法就是 dfs 寻找某个点以及它的后继节点能够到达的最远祖先节点,如果这个最远祖先节点就是进入 dfs 的点,说明所有搜到的后继节点都是在这个强连通分量中,就依次将他们标记为同一个强连通分量. hea

图论$\cdot$强连通分量

和无向图的连通分量类似,有向图有“强连通分量”的说法.“相互可达”的关系在有向图中也是等价关系.每一个集合称为有向图的一个强连通分量(scc).如果把一个集合看成一个点,那么所有的scc构成了一个scc图.这个scc图不会存在任何有向环,因此是一个DAG.求解有向图强连通分量的算法一般都是基于dfs的,常用的算法有Kosaraju算法和Tarjan算法,下面给出Tarjan算法的代码: 1 vector<int> G[maxn]; 2 int pre[maxn], low_link[maxn]

[图论] 有向图强连通分量 (kosaraju算法,Tarjan算法)

记录自己的想法:在有向图中,如果一些顶点中任意两个顶点都能互相到达(间接或直接),那么这些顶点就构成了一个强连通分量,如果一个顶点没有出度,即它不能到达其他任何顶点,那么该顶点自己就是一个强连通分量.在用kosaraju算法和Tarjan算法求强连通分量的时候,就是给所有的顶点分组染色,同一种颜色的顶点在同一个强连通分量中,记录有多少种颜色(有多少个强联通分量),每个顶点属于哪种颜色(每个顶点在哪个强连通分量重).在同一个强连通分量中的所有顶点可以缩为一个顶点,然后根据缩点构造DAG(有向无环图

图论算法(6) --- Tarjan算法求强连通分量

注:此算法以有向图作为输入,并按照所在的强连通分量给出其顶点集的一个划分.graph中的每个节点只在一个强连通分量里出现,即使是单点. 任选一点开始进行深度优先搜索(若dfs结束后仍有未访问的节点,则再从中任选一点再从进行).搜索过程中已访问的节点不再访问.搜索树的若干子树构成了图的强连通分量. 节点按照被访问的顺序存入栈中.从搜索树的子树返回至一个节点时,检查该节点是否是某一连通分量的根节点,并将其从栈中删除.如果某节点是强连通分量的根,则在它之前出栈且还不属于其他强连通分量的节点构成了该节点

图论算法之(强连通分量&lt;Kosaraju&gt;)

强连通分量算法有3个之多,现在介绍这种名字叫做kosaraju算法. 这个算法基于两个事实,1.原图G与逆置图GT拥有相同的强连通分量,这肯定是正确的 2.任意一个子节点存放皆后于父节点,也就是说所有只有当所有子节点都入栈了,父节点才入栈 这种在递归调用之后将顶点入队列的方式叫逆后续排序(reverse post),在无环图中这种排序方式就是拓扑排序. 简要证明: 1. 第一次DFS有向图G时,最后记录下的节点必为最后一棵生成树的根节点. 证明:假设最后记录下节点不是树根,则必存在一节点为树根,

图论算法(6)(更新版) --- Tarjan算法求强连通分量

之前Tarjan算法求强连通分量博文中,代码实现用到了固定大小数组,扩展起来似乎并不是很方便,在java里这样来实现本身就是不太妥当的,所以下面给出一个更新版本的代码实现: package test; import java.util.ArrayList; import java.util.HashMap; import java.util.Iterator; import java.util.LinkedList; import java.util.List; import java.util

第四关——图论:强连通分量

14:27:28 写一首十几岁听的情歌,可惜我没在那个时候遇见你,否则我努力活到百岁以后,就刚好爱你一整个世纪  ——<零几年听的情歌> 今天是待在学校的最后一天了,撒花,庆祝!!!那也祝自己十六岁生日快乐 最近肺炎传染有点严重,大家能点外卖点外卖,能躺床躺床,少出门,你肆无忌惮赖在家的机会来了!!! 好了,今天要讲的呢,是要待在家好好学习一下的强连通分量. 概念 连通分量:在无向图中,即为连通子图. 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到v