Matlab提供系列函数用于聚类分析,归纳起来具体方法有如下:
方法一:直接聚类,利用clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法,该方法的使用者无需了解聚类的原理和过程,但是聚类效果受限制。
方法二:层次聚类,该方法较为灵活,需要进行细节了解聚类原理,具体需要进行如下过程处理:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用 linkage函数定义变量之间的连接;(3)用 cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。
方法三:划分聚类,包括K均值聚类和K中心聚类,同样需要系列步骤完成该过程,要求使用者对聚类原理和过程有较清晰的认识。
接下来介绍一下Matlab中的相关函数和相关聚类方法。
1.Matlab中相关函数介绍
1.1 pdist函数
调用格式:Y=pdist(X,’metric’)
说明:用 ‘metric’指定的方法计算 X 数据矩阵中对象之间的距离。
X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。
metric’取值如下:
‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离;
‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离;
‘minkowski’:明可夫斯基距离;‘cosine’:
‘correlation’:
‘jaccard’: ‘chebychev’:Chebychev距离。
1.2 squareform 函数
调用格式:Z=squareform(Y,..)
1.3 linkage函数
调用格式:Z=linkage(Y,‘method’)
输入值说明:Y为pdist函数返回的M*(M-1)/2个元素的行向量,用‘method’参数指定的算法计算系统聚类树。
method:可取值如下:
‘single’:最短距离法(默认);
‘complete’:最长距离法;
‘average’:未加权平均距离法;
‘weighted’: 加权平均法;
‘centroid’:质心距离法;
‘median’:加权质心距离法;
‘ward’:内平方距离法(最小方差算法)
返回值说明:Z为一个包含聚类树信息的(m-1)×3的矩阵,其中前两列为索引标识,表示哪两个序号的样本可以聚为同一类,第三列为这两个样本之间的距离。另外,除了M个样本以外,对于每次新产生的类,依次用M+1、M+2、…来标识。
为了表示Z矩阵,我们可以用更直观的聚类数来展示,方法为:dendrogram(Z), 产生的聚类数是一个n型树,最下边表示样本,然后一级一级往上聚类,最终成为最顶端的一类。纵轴高度代表距离列。
另外,还可以设置聚类数最下端的样本数,默认为30,可以根据修改dendrogram(Z,n)参数n来实现,1<n<M。dendrogram(Z,0)则表n=M的情况,显示所有叶节点。
1.4 dendrogram函数
调用格式:[H,T,…]=dendrogram(Z,p,…)
说明:生成只有顶部p个节点的冰柱图(谱系图)。
1.5 cophenetic 函数
调用格式:c=cophenet(Z,Y)
说明:利用pdist函数生成的Y和linkage函数生成的Z计算cophenet相关系数。
cophene检验一定算法下产生的二叉聚类树和实际情况的相符程度,就是检测二叉聚类树中各元素间的距离和pdist计算产生的实际的距离之间有多大的相关性,另外也可以用inconsistent表示量化某个层次的聚类上的节点间的差异性。
1.6 cluster 函数
调用格式:T=cluster(Z,…)
说明:根据linkage函数的输出Z 创建分类。
1.7 clusterdata 函数
调用格式:T=clusterdata(X,…)
说明:根据数据创建分类。
T=clusterdata(X,cutoff)与下面的一组命令等价:
Y=pdist(X,’euclid’);
Z=linkage(Y,’single’);
T=cluster(Z,cutoff);
2. Matlab聚类程序的设计
2.1 方法一:一次聚类法
X=[11978 12.5 93.5 31908;…;57500 67.6 238.0 15900];
T=clusterdata(X,0.9)
2.2 方法二和方法三设计流程:分步聚类
Step1
用pdist函数计算相似矩阵,有多种方法可以计算距离,进行计算之前最好先将数据用zscore函数进行标准化。
X2=zscore(X);
Y2=pdist(X2); %计算距离
Step2
Z2=linkage(Y2);
Step3
C2=cophenet(Z2,Y2); //0.94698
Step4 创建聚类,并作出谱系图
T=cluster(Z2,6);
MATLAB中提供了cophenet, inconsistent等表示相关性的函数。cophenet和inconsistent用来计算某些系数,前者用于检验一定算法下产生的二叉聚类树和实际情况的相符程度(就是检测二叉聚类树中各元素间的距离和pdist计算产生的实际的距离之间有多大的相关性),inconsistent则是量化某个层次的聚类上的节点间的差异性(可用于作为cluster的剪裁标准)。
版权声明:本文为博主原创文章,未经博主允许不得转载。