hdu 1532 Drainage Ditches(最大流)

Drainage Ditches

Every time it rains on Farmer John‘s fields, a pond forms over Bessie‘s favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie‘s clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can
transport per minute but also the exact layout of the ditches, which
feed out of the pond and into each other and stream in a potentially
complex network.

Given all this information, determine the maximum rate at which
water can be transported out of the pond and into the stream. For any
given ditch, water flows in only one direction, but there might be a way
that water can flow in a circle.

InputThe input includes several cases. For each case, the first
line contains two space-separated integers, N (0 <= N <= 200) and M
(2 <= M <= 200). N is the number of ditches that Farmer John has
dug. M is the number of intersections points for those ditches.
Intersection 1 is the pond. Intersection point M is the stream. Each of
the following N lines contains three integers, Si, Ei, and Ci. Si and Ei
(1 <= Si, Ei <= M) designate the intersections between which this
ditch flows. Water will flow through this ditch from Si to Ei. Ci (0
<= Ci <= 10,000,000) is the maximum rate at which water will flow
through the ditch.

OutputFor each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

最大流的模板  考虑重边
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<algorithm>
 4 #include<cstring>
 5 #include<cstdlib>
 6 #include<string.h>
 7 #include<set>
 8 #include<vector>
 9 #include<queue>
10 #include<stack>
11 #include<map>
12 #include<cmath>
13 typedef long long ll;
14 typedef unsigned long long LL;
15 using namespace std;
16 const double PI=acos(-1.0);
17 const double eps=0.0000000001;
18 const int INF=1e9;
19 const int N=1000+100;
20 int mp[N][N];
21 int vis[N];
22 int pre[N];
23 int m,n;
24 int BFS(int s,int t){
25     queue<int>q;
26     memset(pre,-1,sizeof(pre));
27     memset(vis,0,sizeof(vis));
28     pre[s]=0;
29     vis[s]=1;
30     q.push(s);
31     while(!q.empty()){
32         int p=q.front();
33         q.pop();
34         for(int i=1;i<=n;i++){
35             if(mp[p][i]>0&&vis[i]==0){
36                 pre[i]=p;
37                 vis[i]=1;
38                 if(i==t)return 1;
39                 q.push(i);
40             }
41         }
42     }
43     return false;
44 }
45 int EK(int s,int t){
46     int flow=0;
47     while(BFS(s,t)){
48         //BFS(s,t);
49         int dis=INF;
50         for(int i=t;i!=s;i=pre[i])
51             dis=min(mp[pre[i]][i],dis);
52         for(int i=t;i!=s;i=pre[i]){
53             mp[pre[i]][i]=mp[pre[i]][i]-dis;
54             mp[i][pre[i]]=mp[i][pre[i]]+dis;
55         }
56         flow=flow+dis;
57     }
58     return flow;
59 }
60 int main(){
61     while(scanf("%d%d",&n,&m)!=EOF){
62         memset(mp,0,sizeof(mp));
63         for(int i=0;i<n;i++){
64             int u,v,w;
65             scanf("%d%d%d",&u,&v,&w);
66             mp[u][v]=mp[u][v]+w;
67         }
68         int ans=EK(1,m);
69         cout<<ans<<endl;
70     }
71
72 }
时间: 2024-11-10 18:28:39

hdu 1532 Drainage Ditches(最大流)的相关文章

HDU 1532 Drainage Ditches(最大流 EK算法)

题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=1532 思路: 网络流最大流的入门题,直接套模板即可~ 注意坑点是:有重边!!读数据的时候要用"+="替换"=". 对网络流不熟悉的,给一篇讲解:http://www.cnblogs.com/ZJUT-jiangnan/p/3632525.html. ?(? ? ??)我是看这篇博客才入门的. 代码: 1 #include <cstdio> 2 #includ

hdu - 1532 Drainage Ditches (最大流)

http://acm.hdu.edu.cn/showproblem.php?pid=1532 求最大的流量,用dinic算法就好. 1 // Rujia Liu 2 // 因为图较大,所以采用Dinic而不是EdmondsKarp 3 // 得益于接口一致性,读者无须理解Dinic就能使用它. 4 #include<cstdio> 5 #include<cstring> 6 #include<queue> 7 #include<algorithm> 8 us

HDU 1532 Drainage Ditches 最大排水量 网络最大流 Edmonds_Karp算法

题目链接:HDU 1532 Drainage Ditches 最大排水量 Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 9641    Accepted Submission(s): 4577 Problem Description Every time it rains on Farmer John

HDU 1532 Drainage Ditches (网络流)

A - Drainage Ditches Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by wate

HDU - 1532 - Drainage Ditches &amp;&amp; 3549 - Flow Problem (网络流初步)

Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 10875    Accepted Submission(s): 5131 Problem Description Every time it rains on Farmer John's fields, a pond forms over Bessie'

HDU 1532 Drainage Ditches (最大网络流)

Drainage Ditches Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submission(s) : 5   Accepted Submission(s) : 3 Font: Times New Roman | Verdana | Georgia Font Size: ← → Problem Description Every time it rains on

hdu 1532 Drainage Ditches(edmond-karp最大流算法)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1532 #include <stdio.h> #include <queue> #include <string.h> #include <algorithm> #define INT_MAX (int)1e9 using namespace std; const int N = 207; int network[N][N], pre[N], used[N], f

HDU 1532 Drainage Ditches 排水渠(网络流,最大流,入门)

题意:给出一个有向图,以及边上的容量上限,求最大流.(有重边,要将容量上限叠加) 思路:用最简单的EK+BFS解决.每次搜到一条到达终点的路径,就立刻退出,更新ans,然后再回头修改图中的当前flow状况(这就得靠记录路径了).当当前图没有到达终点的路径图,流已经饱和,可以结束程序了. 1 #include <bits/stdc++.h> 2 #define LL long long 3 #define pii pair<int,int> 4 #define INF 0x7f7f7

HDU 1532 Drainage Ditches

http://acm.hdu.edu.cn/showproblem.php?pid=1532 基础题. 1 #include<iostream> 2 #include<cstring> 3 #include<string> 4 #include<algorithm> 5 #include<queue> 6 using namespace std; 7 8 int n, m, flow; 9 int vis[205]; 10 //路径记录 11 i